CHAPTER

Enumerations, Autoboxing, and Annotations (Metadata)

This chapter examines three recent additions to the Java language: enumerations, autoboxing, and annotations (also referred to as metadata). Each expands the power of the language by offering a streamlined approach to handling common programming tasks. This chapter also discusses Java's type wrappers and introduces reflection.

Enumerations

Versions prior to JDK 5 lacked one feature that many programmers felt was needed: enumerations. In its simplest form, an *enumeration* is a list of named constants. Although Java offered other features that provide somewhat similar functionality, such as **final** variables, many programmers still missed the conceptual purity of enumerations—especially because enumerations are supported by most other commonly used languages. Beginning with JDK 5, enumerations were added to the Java language, and they are now available to the Java programmer.

In their simplest form, Java enumerations appear similar to enumerations in other languages. However, this similarity is only skin deep. In languages such as C++, enumerations are simply lists of named integer constants. In Java, an enumeration defines a class type. By making enumerations into classes, the concept of the enumeration is greatly expanded. For example, in Java, an enumeration can have constructors, methods, and instance variables. Therefore, although enumerations were several years in the making, Java's rich implementation made them well worth the wait.

Enumeration Fundamentals

An enumeration is created using the **enum** keyword. For example, here is a simple enumeration that lists various apple varieties:

```
// An enumeration of apple varieties.
enum Apple {
   Jonathan, GoldenDel, RedDel, Winesap, Cortland
}
```

256 Part I: The Java Language

The identifiers **Jonathan**, **GoldenDel**, and so on, are called *enumeration constants*. Each is implicitly declared as a public, static final member of **Apple**. Furthermore, their type is the type of the enumeration in which they are declared, which is **Apple** in this case. Thus, in the language of Java, these constants are called *self-typed*, in which "self" refers to the enclosing enumeration.

Once you have defined an enumeration, you can create a variable of that type. However, even though enumerations define a class type, you do not instantiate an **enum** using **new**. Instead, you declare and use an enumeration variable in much the same way as you do one of the primitive types. For example, this declares **ap** as a variable of enumeration type **Apple**:

Apple ap;

Because **ap** is of type **Apple**, the only values that it can be assigned (or can contain) are those defined by the enumeration. For example, this assigns **ap** the value **RedDel**:

ap = Apple.RedDel;

Notice that the symbol **RedDel** is preceded by **Apple**.

Two enumeration constants can be compared for equality by using the = = relational operator. For example, this statement compares the value in **ap** with the **GoldenDel** constant:

```
if(ap == Apple.GoldenDel) // ...
```

An enumeration value can also be used to control a **switch** statement. Of course, all of the **case** statements must use constants from the same **enum** as that used by the **switch** expression. For example, this **switch** is perfectly valid:

```
// Use an enum to control a switch statement.
switch(ap) {
  case Jonathan:
    // ...
  case Winesap:
    // ...
```

Notice that in the **case** statements, the names of the enumeration constants are used without being qualified by their enumeration type name. That is, **Winesap**, not **Apple.Winesap**, is used. This is because the type of the enumeration in the **switch** expression has already implicitly specified the **enum** type of the **case** constants. There is no need to qualify the constants in the **case** statements with their **enum** type name. In fact, attempting to do so will cause a compilation error.

When an enumeration constant is displayed, such as in a **println()** statement, its name is output. For example, given this statement:

```
System.out.println(Apple.Winesap);
```

the name **Winesap** is displayed.

The following program puts together all of the pieces and demonstrates the **Apple** enumeration:

```
// An enumeration of apple varieties.
enum Apple {
  Jonathan, GoldenDel, RedDel, Winesap, Cortland
}
class EnumDemo {
  public static void main(String args[])
    Apple ap;
    ap = Apple.RedDel;
    // Output an enum value.
    System.out.println("Value of ap: " + ap);
    System.out.println();
    ap = Apple.GoldenDel;
    // Compare two enum values.
    if(ap == Apple.GoldenDel)
      System.out.println("ap contains GoldenDel.\n");
    // Use an enum to control a switch statement.
    switch(ap) {
      case Jonathan:
        System.out.println("Jonathan is red.");
        break;
      case GoldenDel:
        System.out.println("Golden Delicious is yellow.");
        break;
      case RedDel:
        System.out.println("Red Delicious is red.");
        break;
      case Winesap:
        System.out.println("Winesap is red.");
        break;
      case Cortland:
        System.out.println("Cortland is red.");
        break;
    }
  }
}
```

The output from the program is shown here:

```
Value of ap: RedDel
ap contains GoldenDel.
Golden Delicious is yellow.
```

The values() and valueOf() Methods

All enumerations automatically contain two predefined methods: **values()** and **valueOf()**. Their general forms are shown here:

public static enum-type[] values()
public static enum-type valueOf(String str)

The **values()** method returns an array that contains a list of the enumeration constants. The **valueOf()** method returns the enumeration constant whose value corresponds to the string passed in *str*. In both cases, *enum-type* is the type of the enumeration. For example, in the case of the **Apple** enumeration shown earlier, the return type of **Apple.valueOf("Winesap")** is **Winesap**.

The following program demonstrates the values() and valueOf() methods:

```
// Use the built-in enumeration methods.
// An enumeration of apple varieties.
enum Apple {
  Jonathan, GoldenDel, RedDel, Winesap, Cortland
}
class EnumDemo2 {
  public static void main(String args[])
  {
    Apple ap;
    System.out.println("Here are all Apple constants:");
    // use values()
    Apple allapples[] = Apple.values();
    for(Apple a : allapples)
      System.out.println(a);
    System.out.println();
    // use valueOf()
    ap = Apple.valueOf("Winesap");
    System.out.println("ap contains " + ap);
  }
}
```

The output from the program is shown here:

```
Here are all Apple constants:
Jonathan
GoldenDel
RedDel
Winesap
Cortland
ap contains Winesap
```

Notice that this program uses a for-each style **for** loop to cycle through the array of constants obtained by calling **values()**. For the sake of illustration, the variable **allapples** was created and assigned a reference to the enumeration array. However, this step is not necessary because the **for** could have been written as shown here, eliminating the need for the **allapples** variable:

```
for(Apple a : Apple.values())
System.out.println(a);
```

Now, notice how the value corresponding to the name **Winesap** was obtained by calling **valueOf()**.

```
ap = Apple.valueOf("Winesap");
```

As explained, **valueOf()** returns the enumeration value associated with the name of the constant represented as a string.

NOTE C/C++ programmers will notice that Java makes it much easier to translate between the human-readable form of an enumeration constant and its binary value than do these other languages. This is a significant advantage to Java's approach to enumerations.

Java Enumerations Are Class Types

As explained, a Java enumeration is a class type. Although you don't instantiate an **enum** using **new**, it otherwise has much the same capabilities as other classes. The fact that **enum** defines a class gives powers to the Java enumeration that enumerations in other languages simply do not have. For example, you can give them constructors, add instance variables and methods, and even implement interfaces.

It is important to understand that each enumeration constant is an object of its enumeration type. Thus, when you define a constructor for an **enum**, the constructor is called when each enumeration constant is created. Also, each enumeration constant has its own copy of any instance variables defined by the enumeration. For example, consider the following version of **Apple**:

```
// Use an enum constructor, instance variable, and method.
enum Apple {
  Jonathan(10), GoldenDel(9), RedDel(12), Winesap(15), Cortland(8);
  private int price; // price of each apple
  // Constructor
  Apple(int p) { price = p; }
  int getPrice() { return price; }
}
class EnumDemo3 {
  public static void main(String args[])
  {
    Apple ap;
```

The output is shown here:

}

Winesap costs 15 cents. All apple prices: Jonathan costs 10 cents. GoldenDel costs 9 cents. RedDel costs 12 cents. Winesap costs 15 cents. Cortland costs 8 cents.

This version of **Apple** adds three things. The first is the instance variable **price**, which is used to hold the price of each variety of apple. The second is the **Apple** constructor, which is passed the price of an apple. The third is the method **getPrice()**, which returns the value of **price**.

When the variable **ap** is declared in **main()**, the constructor for **Apple** is called once for each constant that is specified. Notice how the arguments to the constructor are specified, by putting them inside parentheses after each constant, as shown here:

```
Jonathan(10), GoldenDel(9), RedDel(12), Winesap(15), Cortland(8);
```

These values are passed to the **p** parameter of **Apple()**, which then assigns this value to **price**. Again, the constructor is called once for each constant.

Because each enumeration constant has its own copy of **price**, you can obtain the price of a specified type of apple by calling **getPrice()**. For example, in **main()** the price of a Winesap is obtained by the following call:

```
Apple.Winesap.getPrice()
```

The prices of all varieties are obtained by cycling through the enumeration using a **for** loop. Because there is a copy of **price** for each enumeration constant, the value associated with one constant is separate and distinct from the value associated with another constant. This is a powerful concept, which is only available when enumerations are implemented as classes, as Java does.

Although the preceding example contains only one constructor, an **enum** can offer two or more overloaded forms, just as can any other class. For example, this version of **Apple** provides a default constructor that initializes the price to 1, to indicate that no price data is available:

```
// Use an enum constructor.
enum Apple {
   Jonathan(10), GoldenDel(9), RedDel, Winesap(15), Cortland(8);
   private int price; // price of each apple
   // Constructor
   Apple(int p) { price = p; }
   // Overloaded constructor
   Apple() { price = -1; }
   int getPrice() { return price; }
}
```

Notice that in this version, **RedDel** is not given an argument. This means that the default constructor is called, and **RedDel**'s price variable is given the value 4.

Here are two restrictions that apply to enumerations. First, an enumeration can't inherit another class. Second, an **enum** cannot be a superclass. This means that an **enum** can't be extended. Otherwise, **enum** acts much like any other class type. The key is to remember that each of the enumeration constants is an object of the class in which it is defined.

Enumerations Inherit Enum

Although you can't inherit a superclass when declaring an **enum**, all enumerations automatically inherit one: **java.lang.Enum**. This class defines several methods that are available for use by all enumerations. The **Enum** class is described in detail in Part II, but three of its methods warrant a discussion at this time.

You can obtain a value that indicates an enumeration constant's position in the list of constants. This is called its *ordinal value*, and it is retrieved by calling the **ordinal()** method, shown here:

```
final int ordinal()
```

It returns the ordinal value of the invoking constant. Ordinal values begin at zero. Thus, in the **Apple** enumeration, **Jonathan** has an ordinal value of zero, **GoldenDel** has an ordinal value of 1, **RedDel** has an ordinal value of 2, and so on.

You can compare the ordinal value of two constants of the same enumeration by using the **compareTo()** method. It has this general form:

```
final int compareTo(enum-type e)
```

Here, *enum-type* is the type of the enumeration, and *e* is the constant being compared to the invoking constant. Remember, both the invoking constant and *e* must be of the same enumeration. If the invoking constant has an ordinal value less than *e*'s, then **compareTo()** returns a negative value. If the two ordinal values are the same, then zero is returned. If the invoking constant has an ordinal value greater than *e*'s, then a positive value is returned.

You can compare for equality an enumeration constant with any other object by using **equals()**, which overrides the **equals()** method defined by **Object**. Although **equals()** can compare an enumeration constant to any other object, those two objects will only be equal if

they both refer to the same constant, within the same enumeration. Simply having ordinal values in common will not cause **equals()** to return true if the two constants are from different enumerations.

Remember, you can compare two enumeration references for equality by using = =. The following program demonstrates the **ordinal()**, **compareTo()**, and **equals()** methods:

```
// Demonstrate ordinal(), compareTo(), and equals().
// An enumeration of apple varieties.
enum Apple {
  Jonathan, GoldenDel, RedDel, Winesap, Cortland
}
class EnumDemo4 {
  public static void main(String args[])
  {
    Apple ap, ap2, ap3;
    // Obtain all ordinal values using ordinal().
    System.out.println("Here are all apple constants" +
                       " and their ordinal values: ");
    for(Apple a : Apple.values())
      System.out.println(a + " " + a.ordinal());
    ap = Apple.RedDel;
    ap2 = Apple.GoldenDel;
    ap3 = Apple.RedDel;
    System.out.println();
    // Demonstrate compareTo() and equals()
    if(ap.compareTo(ap2) < 0)</pre>
      System.out.println(ap + " comes before " + ap2);
    if(ap.compareTo(ap2) > 0)
      System.out.println(ap2 + " comes before " + ap);
    if(ap.compareTo(ap3) == 0)
      System.out.println(ap + " equals " + ap3);
    System.out.println();
    if(ap.equals(ap2))
      System.out.println("Error!");
    if(ap.equals(ap3))
      System.out.println(ap + " equals " + ap3);
    if(ap == ap3)
      System.out.println(ap + " == " + ap3);
  }
}
```

The output from the program is shown here:

```
Here are all apple constants and their ordinal values:
Jonathan 0
GoldenDel 1
RedDel 2
Winesap 3
Cortland 4
GoldenDel comes before RedDel
RedDel equals RedDel
RedDel equals RedDel
RedDel == RedDel
```

Another Enumeration Example

Before moving on, we will look at a different example that uses an **enum**. In Chapter 9, an automated "decision maker" program was created. In that version, variables called **NO**, **YES**, **MAYBE**, **LATER**, **SOON**, and **NEVER** were declared within an interface and used to represent the possible answers. While there is nothing technically wrong with that approach, the enumeration is a better choice. Here is an improved version of that program that uses an **enum** called **Answers** to define the answers. You should compare this version to the original in Chapter 9.

```
// An improved version of the "Decision Maker"
// program from Chapter 9. This version uses an
// enum, rather than interface variables, to
// represent the answers.
import java.util.Random;
// An enumeration of the possible answers.
enum Answers {
 NO, YES, MAYBE, LATER, SOON, NEVER
}
class Question {
  Random rand = new Random();
  Answers ask() {
    int prob = (int) (100 * rand.nextDouble());
    if (prob < 15)
     return Answers.MAYBE; // 15%
    else if (prob < 30)
     return Answers.NO; // 15%
    else if (prob < 60)
     return Answers.YES; // 30%
    else if (prob < 75)
     return Answers.LATER; // 15%
    else if (prob < 98)
     return Answers.SOON; // 13%
```

```
else
      return Answers.NEVER; // 2%
  }
}
class AskMe {
  static void answer(Answers result) {
    switch(result) {
      case NO:
        System.out.println("No");
        break;
      case YES:
        System.out.println("Yes");
        break;
      case MAYBE:
        System.out.println("Maybe");
        break;
      case LATER:
        System.out.println("Later");
        break:
      case SOON:
        System.out.println("Soon");
        break;
      case NEVER:
        System.out.println("Never");
        break;
    }
  }
  public static void main(String args[]) {
    Question q = new Question();
    answer(q.ask());
    answer(q.ask());
    answer(q.ask());
    answer(q.ask());
}
```

Type Wrappers

As you know, Java uses primitive types (also called simple types), such as **int** or **double**, to hold the basic data types supported by the language. Primitive types, rather than objects, are used for these quantities for the sake of performance. Using objects for these values would add an unacceptable overhead to even the simplest of calculations. Thus, the primitive types are not part of the object hierarchy, and they do not inherit **Object**.

Despite the performance benefit offered by the primitive types, there are times when you will need an object representation. For example, you can't pass a primitive type by reference to a method. Also, many of the standard data structures implemented by Java operate on objects, which means that you can't use these data structures to store primitive types. To handle these (and other) situations, Java provides *type wrappers*, which are classes that encapsulate a primitive type within an object. The type wrapper classes are described

in detail in Part II, but they are introduced here because they relate directly to Java's autoboxing feature.

The type wrappers are **Double**, **Float**, **Long**, **Integer**, **Short**, **Byte**, **Character**, and **Boolean**. These classes offer a wide array of methods that allow you to fully integrate the primitive types into Java's object hierarchy. Each is briefly examined next.

Character

Character is a wrapper around a char. The constructor for Character is

Character(char ch)

Here, *ch* specifies the character that will be wrapped by the **Character** object being created. To obtain the **char** value contained in a **Character** object, call **charValue()**, shown here:

char charValue()

It returns the encapsulated character.

Boolean

Boolean is a wrapper around boolean values. It defines these constructors:

Boolean(boolean *boolValue*) Boolean(String *boolString*)

In the first version, *boolValue* must be either **true** or **false**. In the second version, if *boolString* contains the string "true" (in uppercase or lowercase), then the new **Boolean** object will be true. Otherwise, it will be false.

To obtain a **boolean** value from a **Boolean** object, use **booleanValue()**, shown here:

```
boolean booleanValue( )
```

It returns the **boolean** equivalent of the invoking object.

The Numeric Type Wrappers

By far, the most commonly used type wrappers are those that represent numeric values. These are **Byte**, **Short**, **Integer**, **Long**, **Float**, and **Double**. All of the numeric type wrappers inherit the abstract class **Number**. **Number** declares methods that return the value of an object in each of the different number formats. These methods are shown here:

```
byte byteValue( )
double doubleValue( )
float floatValue( )
int intValue( )
long longValue( )
short shortValue( )
```

For example, **doubleValue()** returns the value of an object as a **double**, **floatValue()** returns the value as a **float**, and so on. These methods are implemented by each of the numeric type wrappers.

All of the numeric type wrappers define constructors that allow an object to be constructed from a given value, or a string representation of that value. For example, here are the constructors defined for **Integer**:

Integer(int num)
Integer(String str)

If str does not contain a valid numeric value, then a NumberFormatException is thrown.

All of the type wrappers override **toString()**. It returns the human-readable form of the value contained within the wrapper. This allows you to output the value by passing a type wrapper object to **println()**, for example, without having to convert it into its primitive type.

The following program demonstrates how to use a numeric type wrapper to encapsulate a value and then extract that value.

```
// Demonstrate a type wrapper.
class Wrap {
  public static void main(String args[]) {
    Integer iOb = new Integer(100);
    int i = iOb.intValue();
    System.out.println(i + " " + iOb); // displays 100 100
  }
}
```

This program wraps the integer value 100 inside an **Integer** object called **iOb**. The program then obtains this value by calling **intValue()** and stores the result in **i**.

The process of encapsulating a value within an object is called *boxing*. Thus, in the program, this line boxes the value 100 into an **Integer**:

Integer iOb = new Integer(100);

The process of extracting a value from a type wrapper is called *unboxing*. For example, the program unboxes the value in **iOb** with this statement:

```
int i = iOb.intValue();
```

The same general procedure used by the preceding program to box and unbox values has been employed since the original version of Java. However, with the release of JDK 5, Java fundamentally improved on this through the addition of autoboxing, described next.

Autoboxing

Beginning with JDK 5, Java added two important features: *autoboxing* and *auto-unboxing*. Autoboxing is the process by which a primitive type is automatically encapsulated (boxed) into its equivalent type wrapper whenever an object of that type is needed. There is no need to explicitly construct an object. Auto-unboxing is the process by which the value of a boxed object is automatically extracted (unboxed) from a type wrapper when its value is needed. There is no need to call a method such as **intValue()** or **doubleValue()**.

The addition of autoboxing and auto-unboxing greatly streamlines the coding of several algorithms, removing the tedium of manually boxing and unboxing values. It also helps prevent errors. Moreover, it is very important to generics, which operates only on objects. Finally, autoboxing makes working with the Collections Framework (described in Part II) much easier.

With autoboxing it is no longer necessary to manually construct an object in order to wrap a primitive type. You need only assign that value to a type-wrapper reference. Java automatically constructs the object for you. For example, here is the modern way to construct an **Integer** object that has the value 100:

Integer iOb = 100; // autobox an int

Notice that no object is explicitly created through the use of **new**. Java handles this for you, automatically.

To unbox an object, simply assign that object reference to a primitive-type variable. For example, to unbox **iOb**, you can use this line:

int i = iOb; // auto-unbox

Java handles the details for you.

Here is the preceding program rewritten to use autoboxing/unboxing:

```
// Demonstrate autoboxing/unboxing.
class AutoBox {
  public static void main(String args[]) {
    Integer iOb = 100; // autobox an int
    int i = iOb; // auto-unbox
    System.out.println(i + " " + iOb); // displays 100 100
  }
}
```

Autoboxing and Methods

In addition to the simple case of assignments, autoboxing automatically occurs whenever a primitive type must be converted into an object; auto-unboxing takes place whenever an object must be converted into a primitive type. Thus, autoboxing/unboxing might occur when an argument is passed to a method, or when a value is returned by a method. For example, consider this example:

```
// Autoboxing/unboxing takes place with
// method parameters and return values.
class AutoBox2 {
   // Take an Integer parameter and return
   // an int value;
   static int m(Integer v) {
    return v ; // auto-unbox to int
   }
```

```
public static void main(String args[]) {
    // Pass an int to m() and assign the return value
    // to an Integer. Here, the argument 100 is autoboxed
    // into an Integer. The return value is also autoboxed
    // into an Integer.
    Integer iOb = m(100);
    System.out.println(iOb);
}
```

This program displays the following result:

100

In the program, notice that **m()** specifies an **Integer** parameter and returns an **int** result. Inside **main()**, **m()** is passed the value 100. Because **m()** is expecting an **Integer**, this value is automatically boxed. Then, **m()** returns the **int** equivalent of its argument. This causes **v** to be auto-unboxed. Next, this **int** value is assigned to **iOb** in **main()**, which causes the **int** return value to be autoboxed.

Autoboxing/Unboxing Occurs in Expressions

In general, autoboxing and unboxing take place whenever a conversion into an object or from an object is required. This applies to expressions. Within an expression, a numeric object is automatically unboxed. The outcome of the expression is reboxed, if necessary. For example, consider the following program:

```
// Autoboxing/unboxing occurs inside expressions.
class AutoBox3 {
 public static void main(String args[]) {
    Integer iOb, iOb2;
    int i;
    iOb = 100;
    System.out.println("Original value of iOb: " + iOb);
    // The following automatically unboxes iOb,
    // performs the increment, and then reboxes
    // the result back into iOb.
    ++iOb;
    System.out.println("After ++iOb: " + iOb);
    // Here, iOb is unboxed, the expression is
    // evaluated, and the result is reboxed and
    // assigned to iOb2.
    iOb2 = iOb + (iOb / 3);
    System.out.println("iOb2 after expression: " + iOb2);
    // The same expression is evaluated, but the
```

```
// result is not reboxed.
i = iOb + (iOb / 3);
System.out.println("i after expression: " + i);
}
```

The output is shown here:

```
Original value of iOb: 100
After ++iOb: 101
iOb2 after expression: 134
i after expression: 134
```

In the program, pay special attention to this line:

++iOb;

This causes the value in **iOb** to be incremented. It works like this: **iOb** is unboxed, the value is incremented, and the result is reboxed.

Auto-unboxing also allows you to mix different types of numeric objects in an expression. Once the values are unboxed, the standard type promotions and conversions are applied. For example, the following program is perfectly valid:

```
class AutoBox4 {
  public static void main(String args[]) {
    Integer iOb = 100;
    Double dOb = 98.6;

    dOb = dOb + iOb;
    System.out.println("dOb after expression: " + dOb);
  }
}
```

The output is shown here:

dOb after expression: 198.6

As you can see, both the **Double** object **dOb** and the **Integer** object **iOb** participated in the addition, and the result was reboxed and stored in **dOb**.

Because of auto-unboxing, you can use integer numeric objects to control a **switch** statement. For example, consider this fragment:

```
Integer iOb = 2;
switch(iOb) {
  case 1: System.out.println("one");
    break;
  case 2: System.out.println("two");
    break;
```

```
default: System.out.println("error");
}
```

When the **switch** expression is evaluated, **iOb** is unboxed and its **int** value is obtained.

As the examples in the program show, because of autoboxing/unboxing, using numeric objects in an expression is both intuitive and easy. In the past, such code would have involved casts and calls to methods such as **intValue()**.

Autoboxing/Unboxing Boolean and Character Values

As described earlier, Java also supplies wrappers for **boolean** and **char**. These are **Boolean** and **Character**. Autoboxing/unboxing applies to these wrappers, too. For example, consider the following program:

```
// Autoboxing/unboxing a Boolean and Character.
class AutoBox5 {
   public static void main(String args[]) {
     // Autobox/unbox a boolean.
   Boolean b = true;
     // Below, b is auto-unboxed when used in
     // a conditional expression, such as an if.
     if(b) System.out.println("b is true");
     // Autobox/unbox a char.
     Character ch = 'x'; // box a char
     char ch2 = ch; // unbox a char
     System.out.println("ch2 is " + ch2);
   }
}
```

The output is shown here:

b is true ch2 is x

The most important thing to notice about this program is the auto-unboxing of **b** inside the **if** conditional expression. As you should recall, the conditional expression that controls an **if** must evaluate to type **boolean**. Because of auto-unboxing, the **boolean** value contained within **b** is automatically unboxed when the conditional expression is evaluated. Thus, with the advent of autoboxing/unboxing, a **Boolean** object can be used to control an **if** statement.

Because of auto-unboxing, a **Boolean** object can now also be used to control any of Java's loop statements. When a **Boolean** is used as the conditional expression of a **while**, for, or **do/while**, it is automatically unboxed into its **boolean** equivalent. For example, this is now perfectly valid code:

Boolean b; // ... while(b) { // ...

Autoboxing/Unboxing Helps Prevent Errors

In addition to the convenience that it offers, autoboxing/unboxing can also help prevent errors. For example, consider the following program:

```
// An error produced by manual unboxing.
class UnboxingError {
   public static void main(String args[]) {
     Integer iOb = 1000; // autobox the value 1000
     int i = iOb.byteValue(); // manually unbox as byte !!!
     System.out.println(i); // does not display 1000 !
   }
}
```

This program displays not the expected value of 1000, but 24! The reason is that the value inside **iOb** is manually unboxed by calling **byteValue()**, which causes the truncation of the value stored in **iOb**, which is 1,000. This results in the garbage value of 24 being assigned to **i**. Auto-unboxing prevents this type of error because the value in **iOb** will always auto-unbox into a value compatible with **int**.

In general, because autoboxing always creates the proper object, and auto-unboxing always produces the proper value, there is no way for the process to produce the wrong type of object or value. In the rare instances where you want a type different than that produced by the automated process, you can still manually box and unbox values. Of course, the benefits of autoboxing/unboxing are lost. In general, new code should employ autoboxing/unboxing. It is the way that modern Java code will be written.

A Word of Warning

Now that Java includes autoboxing and auto-unboxing, some might be tempted to use objects such as **Integer** or **Double** exclusively, abandoning primitives altogether. For example, with autoboxing/unboxing it is possible to write code like this:

```
// A bad use of autoboxing/unboxing!
Double a, b, c;
a = 10.0;
b = 4.0;
c = Math.sqrt(a*a + b*b);
System.out.println("Hypotenuse is " + c);
```

In this example, objects of type **Double** hold values that are used to calculate the hypotenuse of a right triangle. Although this code is technically correct and does, in fact, work properly, it is a very bad use of autoboxing/unboxing. It is far less efficient than the equivalent code written using the primitive type **double**. The reason is that each autobox and auto-unbox adds overhead that is not present if the primitive type is used.

In general, you should restrict your use of the type wrappers to only those cases in which an object representation of a primitive type is required. Autoboxing/unboxing was not added to Java as a "back door" way of eliminating the primitive types.

Annotations (Metadata)

Beginning with JDK 5, a new facility was added to Java that enables you to embed supplemental information into a source file. This information, called an *annotation*, does not change the actions of a program. Thus, an annotation leaves the semantics of a program unchanged. However, this information can be used by various tools during both development and deployment. For example, an annotation might be processed by a source-code generator. The term *metadata* is also used to refer to this feature, but the term *annotation* is the most descriptive and more commonly used.

Annotation Basics

An annotation is created through a mechanism based on the **interface**. Let's begin with an example. Here is the declaration for an annotation called **MyAnno**:

```
// A simple annotation type.
@interface MyAnno {
   String str();
   int val();
}
```

First, notice the @ that precedes the keyword **interface**. This tells the compiler that an annotation type is being declared. Next, notice the two members **str()** and **val()**. All annotations consist solely of method declarations. However, you don't provide bodies for these methods. Instead, Java implements these methods. Moreover, the methods act much like fields, as you will see.

An annotation cannot include an **extends** clause. However, all annotation types automatically extend the **Annotation** interface. Thus, **Annotation** is a super-interface of all annotations. It is declared within the **java.lang.annotation** package. It overrides **hashCode()**, **equals()**, and **toString()**, which are defined by **Object**. It also specifies **annotationType()**, which returns a **Class** object that represents the invoking annotation.

Once you have declared an annotation, you can use it to annotate a declaration. Any type of declaration can have an annotation associated with it. For example, classes, methods, fields, parameters, and **enum** constants can be annotated. Even an annotation can be annotated. In all cases, the annotation precedes the rest of the declaration.

When you apply an annotation, you give values to its members. For example, here is an example of **MyAnno** being applied to a method:

```
// Annotate a method.
@MyAnno(str = "Annotation Example", val = 100)
public static void myMeth() { // ...
```

This annotation is linked with the method **myMeth()**. Look closely at the annotation syntax. The name of the annotation, preceded by an @, is followed by a parenthesized list of member initializations. To give a member a value, that member's name is assigned a value. Therefore, in the example, the string "Annotation Example" is assigned to the **str** member of **MyAnno**. Notice that no parentheses follow **str** in this assignment. When an annotation member is given a value, only its name is used. Thus, annotation members look like fields in this context.

Specifying a Retention Policy

Before exploring annotations further, it is necessary to discuss *annotation retention policies*. A retention policy determines at what point an annotation is discarded. Java defines three such policies, which are encapsulated within the **java.lang.annotation.RetentionPolicy** enumeration. They are **SOURCE**, **CLASS**, and **RUNTIME**.

An annotation with a retention policy of **SOURCE** is retained only in the source file and is discarded during compilation.

An annotation with a retention policy of **CLASS** is stored in the **.class** file during compilation. However, it is not available through the JVM during run time.

An annotation with a retention policy of **RUNTIME** is stored in the **.class** file during compilation and is available through the JVM during run time. Thus, **RUNTIME** retention offers the greatest annotation persistence.

A retention policy is specified for an annotation by using one of Java's built-in annotations: **@Retention**. Its general form is shown here:

```
@Retention(retention-policy)
```

Here, *retention-policy* must be one of the previously discussed enumeration constants. If no retention policy is specified for an annotation, then the default policy of **CLASS** is used.

The following version of **MyAnno** uses **@Retention** to specify the **RUNTIME** retention policy. Thus, **MyAnno** will be available to the JVM during program execution.

```
@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno {
   String str();
   int val();
}
```

Obtaining Annotations at Run Time by Use of Reflection

Although annotations are designed mostly for use by other development or deployment tools, if they specify a retention policy of **RUNTIME**, then they can be queried at run time by any Java program through the use of *reflection*. Reflection is the feature that enables information about a class to be obtained at run time. The reflection API is contained in the **java.lang.reflect** package. There are a number of ways to use reflection, and we won't examine them all here. We will, however, walk through a few examples that apply to annotations.

The first step to using reflection is to obtain a **Class** object that represents the class whose annotations you want to obtain. **Class** is one of Java's built-in classes and is defined in **java.lang**. It is described in detail in Part II. There are various ways to obtain a **Class** object. One of the easiest is to call **getClass()**, which is a method defined by **Object**. Its general form is shown here:

```
final Class getClass()
```

It returns the **Class** object that represents the invoking object. (**getClass()** and several other reflection-related methods make use of the generics feature. However, because generics are not discussed until Chapter 14, these methods are shown and used here in their raw form. As a result, you will see a warning message when you compile the following programs. In Chapter 14, you will learn about generics in detail.)

After you have obtained a **Class** object, you can use its methods to obtain information about the various items declared by the class, including its annotations. If you want to obtain the annotations associated with a specific item declared within a class, you must first obtain an object that represents that item. For example, **Class** supplies (among others) the **getMethod()**, **getField()**, and **getConstructor()** methods, which obtain information about a method, field, and constructor, respectively. These methods return objects of type **Method**, **Field**, and **Constructor**.

To understand the process, let's work through an example that obtains the annotations associated with a method. To do this, you first obtain a **Class** object that represents the class, and then call **getMethod()** on that **Class** object, specifying the name of the method. **getMethod()** has this general form:

Method getMethod(String methName, Class ... paramTypes)

The name of the method is passed in *methName*. If the method has arguments, then **Class** objects representing those types must also be specified by *paramTypes*. Notice that *paramTypes* is a varargs parameter. This means that you can specify as many parameter types as needed, including zero. **getMethod()** returns a **Method** object that represents the method. If the method can't be found, **NoSuchMethodException** is thrown.

From a **Class**, **Method**, **Field**, or **Constructor** object, you can obtain a specific annotation associated with that object by calling **getAnnotation()**. Its general form is shown here:

Annotation getAnnotation(Class annoType)

Here, *annoType* is a **Class** object that represents the annotation in which you are interested. The method returns a reference to the annotation. Using this reference, you can obtain the values associated with the annotation's members. The method returns **null** if the annotation is not found, which will be the case if the annotation does not have **RUNTIME** retention.

Here is a program that assembles all of the pieces shown earlier and uses reflection to display the annotation associated with a method.

```
import java.lang.annotation.*;
import java.lang.reflect.*;
// An annotation type declaration.
@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno {
  String str();
  int val();
}
class Meta {
  // Annotate a method.
  @MyAnno(str = "Annotation Example", val = 100)
  public static void myMeth() {
    Meta ob = new Meta();
    // Obtain the annotation for this method
    // and display the values of the members.
    try {
```

```
// First, get a Class object that represents
    // this class.
    Class c = ob.getClass();
    // Now, get a Method object that represents
    // this method.
    Method m = c.getMethod("myMeth");
    // Next, get the annotation for this class.
    MyAnno anno = m.getAnnotation(MyAnno.class);
    // Finally, display the values.
    System.out.println(anno.str() + " " + anno.val());
  } catch (NoSuchMethodException exc) {
    System.out.println("Method Not Found.");
  }
}
public static void main(String args[]) {
 myMeth();
```

The output from the program is shown here:

Annotation Example 100

}

This program uses reflection as described to obtain and display the values of **str** and **val** in the **MyAnno** annotation associated with **myMeth()** in the **Meta** class. There are two things to pay special attention to. First, in this line

```
MyAnno anno = m.getAnnotation(MyAnno.class);
```

notice the expression **MyAnno.class**. This expression evaluates to a **Class** object of type **MyAnno**, the annotation. This construct is called a *class literal*. You can use this type of expression whenever a **Class** object of a known class is needed. For example, this statement could have been used to obtain the **Class** object for **Meta**:

```
Class c = Meta.class;
```

Of course, this approach only works when you know the class name of an object in advance, which might not always be the case. In general, you can obtain a class literal for classes, interfaces, primitive types, and arrays.

The second point of interest is the way the values associated with **str** and **val** are obtained when they are output by the following line:

```
System.out.println(anno.str() + " " + anno.val());
```

Notice that they are invoked using the method-call syntax. This same approach is used whenever the value of an annotation member is required.

A Second Reflection Example

In the preceding example, **myMeth()** has no parameters. Thus, when **getMethod()** was called, only the name **myMeth** was passed. However, to obtain a method that has parameters, you must specify class objects representing the types of those parameters as arguments to **getMethod()**. For example, here is a slightly different version of the preceding program:

```
import java.lang.annotation.*;
import java.lang.reflect.*;
@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno {
  String str();
  int val();
}
class Meta {
  // myMeth now has two arguments.
  @MyAnno(str = "Two Parameters", val = 19)
  public static void myMeth(String str, int i)
  {
    Meta ob = new Meta();
    try {
      Class c = ob.getClass();
      // Here, the parameter types are specified.
      Method m = c.getMethod("myMeth", String.class, int.class);
      MyAnno anno = m.getAnnotation(MyAnno.class);
      System.out.println(anno.str() + " " + anno.val());
    } catch (NoSuchMethodException exc) {
       System.out.println("Method Not Found.");
    }
  }
  public static void main(String args[]) {
   myMeth("test", 10);
  }
}
```

The output from this version is shown here:

```
Two Parameters 19
```

In this version, **myMeth()** takes a **String** and an **int** parameter. To obtain information about this method, **getMethod()** must be called as shown here:

Method m = c.getMethod("myMeth", String.class, int.class);

Here, the Class objects representing String and int are passed as additional arguments.

Obtaining All Annotations

You can obtain all annotations that have **RUNTIME** retention that are associated with an item by calling **getAnnotations()** on that item. It has this general form:

```
Annotation[] getAnnotations()
```

It returns an array of the annotations. **getAnnotations()** can be called on objects of type **Class, Method**, **Constructor**, and **Field**.

Here is another reflection example that shows how to obtain all annotations associated with a class and with a method. It declares two annotations. It then uses those annotations to annotate a class and a method.

```
// Show all annotations for a class and a method.
import java.lang.annotation.*;
import java.lang.reflect.*;
@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno {
  String str();
 int val();
}
@Retention(RetentionPolicy.RUNTIME)
@interface What {
  String description();
}
@What(description = "An annotation test class")
@MyAnno(str = "Meta2", val = 99)
class Meta2 {
  @What(description = "An annotation test method")
  @MyAnno(str = "Testing", val = 100)
  public static void myMeth() {
    Meta2 ob = new Meta2();
    try {
      Annotation annos[] = ob.getClass().getAnnotations();
      // Display all annotations for Meta2.
      System.out.println("All annotations for Meta2:");
      for (Annotation a : annos)
        System.out.println(a);
      System.out.println();
      // Display all annotations for myMeth.
      Method m = ob.getClass( ).getMethod("myMeth");
      annos = m.getAnnotations();
      System.out.println("All annotations for myMeth:");
      for(Annotation a : annos)
```

```
System.out.println(a);
} catch (NoSuchMethodException exc) {
   System.out.println("Method Not Found.");
}
public static void main(String args[]) {
   myMeth();
}
```

The output is shown here:

```
All annotations for Meta2:

@What(description=An annotation test class)

@MyAnno(str=Meta2, val=99)

All annotations for myMeth:

@What(description=An annotation test method)

@MyAnno(str=Testing, val=100)
```

The program uses **getAnnotations()** to obtain an array of all annotations associated with the **Meta2** class and with the **myMeth()** method. As explained, **getAnnotations()** returns an array of **Annotation** objects. Recall that **Annotation** is a super-interface of all annotation interfaces and that it overrides **toString()** in **Object**. Thus, when a reference to an **Annotation** is output, its **toString()** method is called to generate a string that describes the annotation, as the preceding output shows.

The AnnotatedElement Interface

The methods getAnnotation() and getAnnotations() used by the preceding examples are defined by the AnnotatedElement interface, which is defined in java.lang.reflect. This interface supports reflection for annotations and is implemented by the classes Method, Field, Constructor, Class, and Package.

In addition to **getAnnotation()** and **getAnnotations()**, **AnnotatedElement** defines two other methods. The first is **getDeclaredAnnotations()**, which has this general form:

Annotation[] getDeclaredAnnotations()

It returns all non-inherited annotations present in the invoking object. The second is **isAnnotationPresent()**, which has this general form:

boolean isAnnotationPresent(Class annoType)

It returns true if the annotation specified by *annoType* is associated with the invoking object. It returns false otherwise.

Note The methods getAnnotation() and isAnnotationPresent() make use of the generics feature to ensure type safety. Because generics are not discussed until Chapter 14, their signatures are shown in this chapter in their raw forms.

Using Default Values

You can give annotation members default values that will be used if no value is specified when the annotation is applied. A default value is specified by adding a **default** clause to a member's declaration. It has this general form:

```
type member() default value;
```

Here, *value* must be of a type compatible with *type*.

Here is @MyAnno rewritten to include default values:

```
// An annotation type declaration that includes defaults.
@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno {
   String str() default "Testing";
   int val() default 9000;
}
```

This declaration gives a default value of "Testing" to **str** and 9000 to **val**. This means that neither value needs to be specified when **@MyAnno** is used. However, either or both can be given values if desired. Therefore, following are the four ways that **@MyAnno** can be used:

```
@MyAnno() // both str and val default
@MyAnno(str = "some string") // val defaults
@MyAnno(val = 100) // str defaults
@MyAnno(str = "Testing", val = 100) // no defaults
```

The following program demonstrates the use of default values in an annotation.

```
import java.lang.annotation.*;
import java.lang.reflect.*;
// An annotation type declaration that includes defaults.
@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno {
  String str() default "Testing";
  int val() default 9000;
}
class Meta3 {
  // Annotate a method using the default values.
  @MyAnno()
  public static void myMeth() {
    Meta3 ob = new Meta3();
    // Obtain the annotation for this method
    // and display the values of the members.
    try {
      Class c = ob.getClass();
      Method m = c.getMethod("myMeth");
```

```
MyAnno anno = m.getAnnotation(MyAnno.class);
System.out.println(anno.str() + " " + anno.val());
} catch (NoSuchMethodException exc) {
System.out.println("Method Not Found.");
}
}
public static void main(String args[]) {
myMeth();
}
```

The output is shown here:

Testing 9000

Marker Annotations

A *marker* annotation is a special kind of annotation that contains no members. Its sole purpose is to mark a declaration. Thus, its presence as an annotation is sufficient. The best way to determine if a marker annotation is present is to use the method **isAnnotationPresent()**, which is a defined by the **AnnotatedElement** interface.

Here is an example that uses a marker annotation. Because a marker interface contains no members, simply determining whether it is present or absent is sufficient.

```
import java.lang.annotation.*;
import java.lang.reflect.*;
// A marker annotation.
@Retention(RetentionPolicy.RUNTIME)
@interface MyMarker { }
class Marker {
  // Annotate a method using a marker.
  // Notice that no ( ) is needed.
  @MyMarker
  public static void myMeth() {
    Marker ob = new Marker();
    try {
      Method m = ob.getClass().getMethod("myMeth");
      // Determine if the annotation is present.
      if (m.isAnnotationPresent (MyMarker.class))
        System.out.println("MyMarker is present.");
    } catch (NoSuchMethodException exc) {
       System.out.println("Method Not Found.");
    }
  }
```

```
public static void main(String args[]) {
    myMeth();
}
```

The output, shown here, confirms that @MyMarker is present:

MyMarker is present.

In the program, notice that you do not need to follow **@MyMarker** with parentheses when it is applied. Thus, **@MyMarker** is applied simply by using its name, like this:

@MyMarker

It is not wrong to supply an empty set of parentheses, but they are not needed.

Single-Member Annotations

A *single-member* annotation contains only one member. It works like a normal annotation except that it allows a shorthand form of specifying the value of the member. When only one member is present, you can simply specify the value for that member when the annotation is applied—you don't need to specify the name of the member. However, in order to use this shorthand, the name of the member must be **value**.

Here is an example that creates and uses a single-member annotation:

```
import java.lang.annotation.*;
import java.lang.reflect.*;
// A single-member annotation.
@Retention(RetentionPolicy.RUNTIME)
@interface MySingle {
  int value(); // this variable name must be value
}
class Single {
  // Annotate a method using a single-member annotation.
  @MySingle(100)
  public static void myMeth() {
    Single ob = new Single();
    try {
      Method m = ob.getClass().getMethod("myMeth");
      MySingle anno = m.getAnnotation(MySingle.class);
      System.out.println(anno.value()); // displays 100
    } catch (NoSuchMethodException exc) {
       System.out.println("Method Not Found.");
    }
  }
```

```
public static void main(String args[]) {
    myMeth();
}
```

As expected, this program displays the value 100. In the program, **@MySingle** is used to annotate **myMeth()**, as shown here:

@MySingle(100)

Notice that **value** = need not be specified.

You can use the single-value syntax when applying an annotation that has other members, but those other members must all have default values. For example, here the value **xyz** is added, with a default value of zero:

```
@interface SomeAnno {
    int value();
    int xyz() default 0;
}
```

In cases in which you want to use the default for **xyz**, you can apply **@SomeAnno**, as shown next, by simply specifying the value of **value** by using the single-member syntax.

```
@SomeAnno(88)
```

In this case, **xyz** defaults to zero, and **value** gets the value 88. Of course, to specify a different value for **xyz** requires that both members be explicitly named, as shown here:

```
@SomeAnno(value = 88, xyz = 99)
```

Remember, whenever you are using a single-member annotation, the name of that member must be **value**.

The Built-In Annotations

Java defines many built-in annotations. Most are specialized, but seven are general purpose. Of these, four are imported from **java.lang.annotation**: **@Retention**, **@Documented**, **@Target**, and **@Inherited**. Three—**@Override**, **@Deprecated**, and **@SuppressWarnings**—are included in **java.lang**. Each is described here.

@Retention

@Retention is designed to be used only as an annotation to another annotation. It specifies the retention policy as described earlier in this chapter.

@Documented

The **@Documented** annotation is a marker interface that tells a tool that an annotation is to be documented. It is designed to be used only as an annotation to an annotation declaration.

@Target

The **@Target** annotation specifies the types of declarations to which an annotation can be applied. It is designed to be used only as an annotation to another annotation. **@Target** takes

one argument, which must be a constant from the **ElementType** enumeration. This argument specifies the types of declarations to which the annotation can be applied. The constants are shown here along with the type of declaration to which they correspond.

Target Constant	Annotation Can Be Applied To
ANNOTATION_TYPE	Another annotation
CONSTRUCTOR	Constructor
FIELD	Field
LOCAL_VARIABLE	Local variable
METHOD	Method
PACKAGE	Package
PARAMETER	Parameter
TYPE	Class, interface, or enumeration

You can specify one or more of these values in a **@Target** annotation. To specify multiple values, you must specify them within a braces-delimited list. For example, to specify that an annotation applies only to fields and local variables, you can use this **@Target** annotation:

@Target({ ElementType.FIELD, ElementType.LOCAL_VARIABLE })

@Inherited

@Inherited is a marker annotation that can be used only on another annotation declaration. Furthermore, it affects only annotations that will be used on class declarations. **@Inherited** causes the annotation for a superclass to be inherited by a subclass. Therefore, when a request for a specific annotation is made to the subclass, if that annotation is not present in the subclass, then its superclass is checked. If that annotation is present in the superclass, and if it is annotated with **@Inherited**, then that annotation will be returned.

@Override

@Override is a marker annotation that can be used only on methods. A method annotated with **@Override** must override a method from a superclass. If it doesn't, a compile-time error will result. It is used to ensure that a superclass method is actually overridden, and not simply overloaded.

@Deprecated

@Deprecated is a marker annotation. It indicates that a declaration is obsolete and has been replaced by a newer form.

@SuppressWarnings

@SuppressWarnings specifies that one or more warnings that might be issued by the compiler are to be suppressed. The warnings to suppress are specified by name, in string form. This annotation can be applied to any type of declaration.

Some Restrictions

There are a number of restrictions that apply to annotation declarations. First, no annotation can inherit another. Second, all methods declared by an annotation must be without parameters. Furthermore, they must return one of the following:

- A primitive type, such as **int** or **double**
- An object of type **String** or **Class**
- An **enum** type
- Another annotation type
- An array of one of the preceding types

Annotations cannot be generic. In other words, they cannot take type parameters. (Generics are described in Chapter 14.) Finally, annotation methods cannot specify a **throws** clause.

CHAPTER

I/O, Applets, and Other Topics

This chapter introduces two of Java's most important packages: io and applet. The io package supports Java's basic I/O (input/output) system, including file I/O. The applet package supports applets. Support for both I/O and applets comes from Java's core API libraries, not from language keywords. For this reason, an in-depth discussion of these topics is found in Part II of this book, which examines Java's API classes. This chapter discusses the foundation of these two subsystems so that you can see how they are integrated into the Java language and how they fit into the larger context of the Java programming and execution environment. This chapter also examines the last of Java's keywords: transient, volatile, instanceof, native, strictfp, and assert. It concludes by examining static import and by describing another use for the this keyword.

I/O Basics

As you may have noticed while reading the preceding 12 chapters, not much use has been made of I/O in the example programs. In fact, aside from **print()** and **println()**, none of the I/O methods have been used significantly. The reason is simple: most real applications of Java are not text-based, console programs. Rather, they are graphically oriented programs that rely upon Java's Abstract Window Toolkit (AWT) or Swing for interaction with the user. Although text-based programs are excellent as teaching examples, they do not constitute an important use for Java in the real world. Also, Java's support for console I/O is limited and somewhat awkward to use—even in simple example programs. Text-based console I/O is just not very important to Java programming.

The preceding paragraph notwithstanding, Java does provide strong, flexible support for I/O as it relates to files and networks. Java's I/O system is cohesive and consistent. In fact, once you understand its fundamentals, the rest of the I/O system is easy to master.

Streams

Java programs perform I/O through streams. A *stream* is an abstraction that either produces or consumes information. A stream is linked to a physical device by the Java I/O system. All streams behave in the same manner, even if the actual physical devices to which they are linked differ. Thus, the same I/O classes and methods can be applied to any type of device. This means that an input stream can abstract many different kinds of input: from a disk file, a keyboard, or a network socket. Likewise, an output stream may refer to the console, a disk file, or a network connection. Streams are a clean way to deal with input/output without having every part of your code understand the difference between a keyboard and a network, for example. Java implements streams within class hierarchies defined in the **java.io** package.

Byte Streams and Character Streams

Java defines two types of streams: byte and character. *Byte streams* provide a convenient means for handling input and output of bytes. Byte streams are used, for example, when reading or writing binary data. *Character streams* provide a convenient means for handling input and output of characters. They use Unicode and, therefore, can be internationalized. Also, in some cases, character streams are more efficient than byte streams.

The original version of Java (Java 1.0) did not include character streams and, thus, all I/O was byte-oriented. Character streams were added by Java 1.1, and certain byte-oriented classes and methods were deprecated. This is why older code that doesn't use character streams should be updated to take advantage of them, where appropriate.

One other point: at the lowest level, all I/O is still byte-oriented. The character-based streams simply provide a convenient and efficient means for handling characters.

An overview of both byte-oriented streams and character-oriented streams is presented in the following sections.

The Byte Stream Classes

Byte streams are defined by using two class hierarchies. At the top are two abstract classes: **InputStream** and **OutputStream**. Each of these abstract classes has several concrete subclasses that handle the differences between various devices, such as disk files, network connections, and even memory buffers. The byte stream classes are shown in Table 13-1. A few of these classes are discussed later in this section. Others are described in Part II. Remember, to use the stream classes, you must import **java.io**.

The abstract classes **InputStream** and **OutputStream** define several key methods that the other stream classes implement. Two of the most important are **read()** and **write()**, which, respectively, read and write bytes of data. Both methods are declared as abstract inside **InputStream** and **OutputStream**. They are overridden by derived stream classes.

The Character Stream Classes

Character streams are defined by using two class hierarchies. At the top are two abstract classes, **Reader** and **Writer**. These abstract classes handle Unicode character streams. Java has several concrete subclasses of each of these. The character stream classes are shown in Table 13-2.

The abstract classes **Reader** and **Writer** define several key methods that the other stream classes implement. Two of the most important methods are **read()** and **write()**, which read and write characters of data, respectively. These methods are overridden by derived stream classes.

Stream Class	Meaning
BufferedInputStream	Buffered input stream
BufferedOutputStream	Buffered output stream
ByteArrayInputStream	Input stream that reads from a byte array
ByteArrayOutputStream	Output stream that writes to a byte array
DataInputStream	An input stream that contains methods for reading the Java standard data types
DataOutputStream	An output stream that contains methods for writing the Java standard data types
FileInputStream	Input stream that reads from a file
FileOutputStream	Output stream that writes to a file
FilterInputStream	Implements InputStream
FilterOutputStream	Implements OutputStream
InputStream	Abstract class that describes stream input
ObjectInputStream	Input stream for objects
ObjectOutputStream	Output stream for objects
OutputStream	Abstract class that describes stream output
PipedInputStream	Input pipe
PipedOutputStream	Output pipe
PrintStream	Output stream that contains print() and println()
PushbackInputStream	Input stream that supports one-byte "unget," which returns a byte to the input stream
RandomAccessFile	Supports random access file I/O
SequenceInputStream	Input stream that is a combination of two or more input streams that will be read sequentially, one after the other

TABLE 13-1
 The Byte Stream Classes

Stream Class	Meaning
BufferedReader	Buffered input character stream
BufferedWriter	Buffered output character stream
CharArrayReader	Input stream that reads from a character array
CharArrayWriter	Output stream that writes to a character array
FileReader	Input stream that reads from a file
FileWriter	Output stream that writes to a file
FilterReader	Filtered reader
FilterWriter	Filtered writer

Stream Class	Meaning
InputStreamReader	Input stream that translates bytes to characters
LineNumberReader	Input stream that counts lines
OutputStreamWriter	Output stream that translates characters to bytes
PipedReader	Input pipe
PipedWriter	Output pipe
PrintWriter	Output stream that contains print() and println()
PushbackReader	Input stream that allows characters to be returned to the input stream
Reader	Abstract class that describes character stream input
StringReader	Input stream that reads from a string
StringWriter	Output stream that writes to a string
Writer	Abstract class that describes character stream output

 TABLE 13-2
 The Character Stream I/O Classes (continued)

The Predefined Streams

As you know, all Java programs automatically import the **java.lang** package. This package defines a class called **System**, which encapsulates several aspects of the run-time environment. For example, using some of its methods, you can obtain the current time and the settings of various properties associated with the system. **System** also contains three predefined stream variables: **in**, **out**, and **err**. These fields are declared as **public**, **static**, and **final** within **System**. This means that they can be used by any other part of your program and without reference to a specific **System** object.

System.out refers to the standard output stream. By default, this is the console. **System.in** refers to standard input, which is the keyboard by default. **System.err** refers to the standard error stream, which also is the console by default. However, these streams may be redirected to any compatible I/O device.

System.in is an object of type **InputStream**; **System.out** and **System.err** are objects of type **PrintStream**. These are byte streams, even though they typically are used to read and write characters from and to the console. As you will see, you can wrap these within character-based streams, if desired.

The preceding chapters have been using **System.out** in their examples. You can use **System.err** in much the same way. As explained in the next section, use of **System.in** is a little more complicated.

Reading Console Input

In Java 1.0, the only way to perform console input was to use a byte stream, and older code that uses this approach persists. Today, using a byte stream to read console input is still technically possible, but doing so is not recommended. The preferred method of reading console input is to use a character-oriented stream, which makes your program easier to internationalize and maintain.

In Java, console input is accomplished by reading from **System.in**. To obtain a characterbased stream that is attached to the console, wrap **System.in** in a **BufferedReader** object. **BufferedReader** supports a buffered input stream. Its most commonly used constructor is shown here:

BufferedReader(Reader inputReader)

Here, *inputReader* is the stream that is linked to the instance of **BufferedReader** that is being created. **Reader** is an abstract class. One of its concrete subclasses is **InputStreamReader**, which converts bytes to characters. To obtain an **InputStreamReader** object that is linked to **System.in**, use the following constructor:

InputStreamReader(InputStream inputStream)

Because **System.in** refers to an object of type **InputStream**, it can be used for *inputStream*. Putting it all together, the following line of code creates a **BufferedReader** that is connected to the keyboard:

```
BufferedReader br = new BufferedReader(new
InputStreamReader(System.in));
```

After this statement executes, **br** is a character-based stream that is linked to the console through **System.in**.

Reading Characters

To read a character from a **BufferedReader**, use **read()**. The version of **read()** that we will be using is

int read() throws IOException

Each time that **read()** is called, it reads a character from the input stream and returns it as an integer value. It returns 4 when the end of the stream is encountered. As you can see, it can throw an **IOException**.

The following program demonstrates **read()** by reading characters from the console until the user types a "q." Notice that any I/O exceptions that might be generated are simply thrown out of **main()**. Such an approach is common when reading from the console, but you can handle these types of errors yourself, if you chose.

```
// Use a BufferedReader to read characters from the console.
import java.io.*;
class BRRead {
  public static void main(String args[])
    throws IOException
    {
      char c;
      BufferedReader br = new
           BufferedReader (new InputStreamReader(System.in));
      System.out.println("Enter characters, 'q' to quit.");
```

```
// read characters
do {
    c = (char) br.read();
    System.out.println(c);
    } while(c != 'q');
}
```

Here is a sample run:

```
Enter characters, 'q' to quit.
123abcq
1
2
3
a
b
c
q
```

This output may look a little different from what you expected, because **System.in** is line buffered, by default. This means that no input is actually passed to the program until you press ENTER. As you can guess, this does not make **read()** particularly valuable for interactive console input.

Reading Strings

To read a string from the keyboard, use the version of **readLine()** that is a member of the **BufferedReader** class. Its general form is shown here:

```
String readLine() throws IOException
```

As you can see, it returns a String object.

The following program demonstrates **BufferedReader** and the **readLine()** method; the program reads and displays lines of text until you enter the word "stop":
```
System.out.println(str);
} while(!str.equals("stop"));
}
```

The next example creates a tiny text editor. It creates an array of **String** objects and then reads in lines of text, storing each line in the array. It will read up to 100 lines or until you enter "stop." It uses a **BufferedReader** to read from the console.

```
// A tiny editor.
import java.io.*;
class TinyEdit {
  public static void main(String args[])
    throws IOException
  {
    // create a BufferedReader using System.in
    BufferedReader br = new BufferedReader(new
                            InputStreamReader(Svstem.in));
    String str[] = new String[100];
    System.out.println("Enter lines of text.");
    System.out.println("Enter 'stop' to quit.");
    for(int i=0; i<100; i++) {</pre>
      str[i] = br.readLine();
      if(str[i].equals("stop")) break;
    System.out.println("\nHere is your file:");
    // display the lines
    for(int i=0; i<100; i++) {</pre>
      if(str[i].equals("stop")) break;
      System.out.println(str[i]);
  }
}
   Here is a sample run:
   Enter lines of text.
   Enter 'stop' to quit.
   This is line one.
   This is line two.
   Java makes working with strings easy.
   Just create String objects.
   stop
   Here is your file:
   This is line one.
   This is line two.
   Java makes working with strings easy.
   Just create String objects.
```

Writing Console Output

Console output is most easily accomplished with **print()** and **println()**, described earlier, which are used in most of the examples in this book. These methods are defined by the class **PrintStream** (which is the type of object referenced by **System.out**). Even though **System.out** is a byte stream, using it for simple program output is still acceptable. However, a character-based alternative is described in the next section.

Because **PrintStream** is an output stream derived from **OutputStream**, it also implements the low-level method **write()**. Thus, **write()** can be used to write to the console. The simplest form of **write()** defined by **PrintStream** is shown here:

```
void write(int byteval)
```

This method writes to the stream the byte specified by *byteval*. Although *byteval* is declared as an integer, only the low-order eight bits are written. Here is a short example that uses **write()** to output the character "A" followed by a newline to the screen:

```
// Demonstrate System.out.write().
class WriteDemo {
   public static void main(String args[]) {
      int b;
      b = 'A';
      System.out.write(b);
      System.out.write('\n');
   }
}
```

You will not often use **write()** to perform console output (although doing so might be useful in some situations), because **print()** and **println()** are substantially easier to use.

The PrintWriter Class

Although using **System.out** to write to the console is acceptable, its use is recommended mostly for debugging purposes or for sample programs, such as those found in this book. For real-world programs, the recommended method of writing to the console when using Java is through a **PrintWriter** stream. **PrintWriter** is one of the character-based classes. Using a character-based class for console output makes it easier to internationalize your program.

PrintWriter defines several constructors. The one we will use is shown here:

PrintWriter(OutputStream outputStream, boolean flushOnNewline)

Here, *outputStream* is an object of type **OutputStream**, and *flushOnNewline* controls whether Java flushes the output stream every time a **println()** method is called. If *flushOnNewline* is **true**, flushing automatically takes place. If **false**, flushing is not automatic.

PrintWriter supports the **print()** and **println()** methods for all types including **Object**. Thus, you can use these methods in the same way as they have been used with **System.out**. If an argument is not a simple type, the **PrintWriter** methods call the object's **toString()** method and then print the result. To write to the console by using a **PrintWriter**, specify **System.out** for the output stream and flush the stream after each newline. For example, this line of code creates a **PrintWriter** that is connected to console output:

```
PrintWriter pw = new PrintWriter(System.out, true);
```

The following application illustrates using a PrintWriter to handle console output:

```
// Demonstrate PrintWriter
import java.io.*;
public class PrintWriterDemo {
   public static void main(String args[]) {
     PrintWriter pw = new PrintWriter(System.out, true);
     pw.println("This is a string");
     int i = -7;
     pw.println(i);
     double d = 4.5e-7;
     pw.println(d);
   }
}
```

The output from this program is shown here:

```
This is a string
-7
4.5E-7
```

Remember, there is nothing wrong with using **System.out** to write simple text output to the console when you are learning Java or debugging your programs. However, using a **PrintWriter** will make your real-world applications easier to internationalize. Because no advantage is gained by using a **PrintWriter** in the sample programs shown in this book, we will continue to use **System.out** to write to the console.

Reading and Writing Files

Java provides a number of classes and methods that allow you to read and write files. In Java, all files are byte-oriented, and Java provides methods to read and write bytes from and to a file. However, Java allows you to wrap a byte-oriented file stream within a character-based object. This technique is described in Part II. This chapter examines the basics of file I/O.

Two of the most often-used stream classes are **FileInputStream** and **FileOutputStream**, which create byte streams linked to files. To open a file, you simply create an object of one of these classes, specifying the name of the file as an argument to the constructor. While both classes support additional, overridden constructors, the following are the forms that we will be using:

FileInputStream(String *fileName*) throws FileNotFoundException FileOutputStream(String *fileName*) throws FileNotFoundException Here, *fileName* specifies the name of the file that you want to open. When you create an input stream, if the file does not exist, then **FileNotFoundException** is thrown. For output streams, if the file cannot be created, then **FileNotFoundException** is thrown. When an output file is opened, any preexisting file by the same name is destroyed.

When you are done with a file, you should close it by calling **close()**. It is defined by both **FileInputStream** and **FileOutputStream**, as shown here:

void close() throws IOException

To read from a file, you can use a version of **read()** that is defined within **FileInputStream**. The one that we will use is shown here:

```
int read() throws IOException
```

Each time that it is called, it reads a single byte from the file and returns the byte as an integer value. **read()** returns 1 when the end of the file is encountered. It can throw an **IOException**.

The following program uses **read()** to input and display the contents of a text file, the name of which is specified as a command-line argument. Note the **try/catch** blocks that handle two errors that might occur when this program is used—the specified file not being found or the user forgetting to include the name of the file. You can use this same approach whenever you use command-line arguments. Other I/O exceptions that might occur are simply thrown out of **main()**, which is acceptable for this simple example. However, often you will want to handle all I/O exceptions yourself when working with files.

```
/* Display a text file.
   To use this program, specify the name
   of the file that you want to see.
   For example, to see a file called TEST.TXT,
   use the following command line.
   iava ShowFile TEST.TXT
*/
import java.io.*;
class ShowFile {
  public static void main(String args[])
    throws IOException
    int i;
    FileInputStream fin;
    try {
      fin = new FileInputStream(args[0]);
    } catch(FileNotFoundException e) {
      System.out.println("File Not Found");
      return;
    } catch(ArrayIndexOutOfBoundsException e) {
      System.out.println("Usage: ShowFile File");
      return;
    }
```

```
// read characters until EOF is encountered
do {
    i = fin.read();
    if(i != -1) System.out.print((char) i);
    } while(i != -1);
    fin.close();
}
```

To write to a file, you can use the **write()** method defined by **FileOutputStream**. Its simplest form is shown here:

void write(int byteval) throws IOException

This method writes the byte specified by *byteval* to the file. Although *byteval* is declared as an integer, only the low-order eight bits are written to the file. If an error occurs during writing, an **IOException** is thrown. The next example uses **write()** to copy a text file:

```
/* Copy a text file.
   To use this program, specify the name
   of the source file and the destination file.
   For example, to copy a file called FIRST.TXT
   to a file called SECOND.TXT, use the following
   command line.
   java CopyFile FIRST.TXT SECOND.TXT
*/
import java.io.*;
class CopyFile {
  public static void main(String args[])
    throws IOException
  {
    int i;
    FileInputStream fin;
    FileOutputStream fout;
    try {
      // open input file
      try {
        fin = new FileInputStream(args[0]);
      } catch(FileNotFoundException e) {
        System.out.println("Input File Not Found");
        return;
      }
```

```
// open output file
   try {
     fout = new FileOutputStream(args[1]);
    } catch(FileNotFoundException e) {
     System.out.println("Error Opening Output File");
     return;
 } catch(ArrayIndexOutOfBoundsException e) {
   System.out.println("Usage: CopyFile From To");
   return:
 // Copy File
 try {
   do {
     i = fin.read();
     if(i != -1) fout.write(i);
    } while(i != -1);
 } catch(IOException e) {
   System.out.println("File Error");
 fin.close();
 fout.close();
}
```

Notice the way that potential I/O errors are handled in this program. Unlike some other computer languages, including C and C++, which use error codes to report file errors, Java uses its exception handling mechanism. Not only does this make file handling cleaner, but it also enables Java to easily differentiate the end-of-file condition from file errors when input is being performed. In C/C++, many input functions return the same value when an error occurs and when the end of the file is reached. (That is, in C/C++, an EOF condition often is mapped to the same value as an input error.) This usually means that the programmer must include extra program statements to determine which event actually occurred. In Java, errors are passed to your program via exceptions, not by values returned by read(). Thus, when read() returns 4, it means only one thing: the end of the file has been encountered.

Applet Fundamentals

}

All of the preceding examples in this book have been Java console-based applications. However, these types of applications constitute only one class of Java programs. Another type of program is the applet. As mentioned in Chapter 1, *applets* are small applications that are accessed on an Internet server, transported over the Internet, automatically installed, and run as part of a web document. After an applet arrives on the client, it has limited access to resources so that it can produce a graphical user interface and run complex computations without introducing the risk of viruses or breaching data integrity.

Many of the issues connected with the creation and use of applets are found in Part II, when the **applet** package is examined and also when Swing is described in Part III. However, the fundamentals connected to the creation of an applet are presented here, because applets are not structured in the same way as the programs that have been used thus far. As you will see, applets differ from console-based applications in several key areas.

Let's begin with the simple applet shown here:

```
import java.awt.*;
import java.applet.*;
public class SimpleApplet extends Applet {
   public void paint(Graphics g) {
     g.drawString("A Simple Applet", 20, 20);
   }
}
```

This applet begins with two **import** statements. The first imports the Abstract Window Toolkit (AWT) classes. Applets interact with the user (either directly or indirectly) through the AWT, not through the console-based I/O classes. The AWT contains support for a window-based, graphical user interface. As you might expect, the AWT is quite large and sophisticated, and a complete discussion of it consumes several chapters in Part II of this book. Fortunately, this simple applet makes very limited use of the AWT. (Applets can also use Swing to provide the graphical user interface, but this approach is described later in this book.) The second **import** statement imports the **applet** package, which contains the class **Applet**.

The next line in the program declares the class **SimpleApplet**. This class must be declared as **public**, because it will be accessed by code that is outside the program.

Inside **SimpleApplet**, **paint()** is declared. This method is defined by the AWT and must be overridden by the applet. **paint()** is called each time that the applet must redisplay its output. This situation can occur for several reasons. For example, the window in which the applet is running can be overwritten by another window and then uncovered. Or, the applet window can be minimized and then restored. **paint()** is also called when the applet begins execution. Whatever the cause, whenever the applet must redraw its output, **paint()** is called. The **paint()** method has one parameter of type **Graphics**. This parameter contains the graphics context, which describes the graphics environment in which the applet is running. This context is used whenever output to the applet is required.

Inside **paint()** is a call to **drawString()**, which is a member of the **Graphics** class. This method outputs a string beginning at the specified X,Y location. It has the following general form:

void drawString(String message, int x, int y)

Here, *message* is the string to be output beginning at *x*,*y*. In a Java window, the upper-left corner is location 0,0. The call to **drawString()** in the applet causes the message "A Simple Applet" to be displayed beginning at location 20,20.

Notice that the applet does not have a **main()** method. Unlike Java programs, applets do not begin execution at **main()**. In fact, most applets don't even have a **main()** method. Instead, an applet begins execution when the name of its class is passed to an applet viewer or to a network browser.

After you enter the source code for **SimpleApplet**, compile in the same way that you have been compiling programs. However, running **SimpleApplet** involves a different process. In fact, there are two ways in which you can run an applet:

- Executing the applet within a Java-compatible web browser.
- Using an applet viewer, such as the standard tool, **appletviewer**. An applet viewer executes your applet in a window. This is generally the fastest and easiest way to test your applet.

Each of these methods is described next.

To execute an applet in a web browser, you need to write a short HTML text file that contains a tag that loads the applet. Currently, Sun recommends using the APPLET tag for this purpose. Here is the HTML file that executes **SimpleApplet**:

```
<applet code="SimpleApplet" width=200 height=60> </applet>
```

The **width** and **height** statements specify the dimensions of the display area used by the applet. (The APPLET tag contains several other options that are examined more closely in Part II.) After you create this file, you can execute your browser and then load this file, which causes **SimpleApplet** to be executed.

To execute **SimpleApplet** with an applet viewer, you may also execute the HTML file shown earlier. For example, if the preceding HTML file is called **RunApp.html**, then the following command line will run **SimpleApplet**:

C:\>appletviewer RunApp.html

However, a more convenient method exists that you can use to speed up testing. Simply include a comment at the head of your Java source code file that contains the APPLET tag. By doing so, your code is documented with a prototype of the necessary HTML statements, and you can test your compiled applet merely by starting the applet viewer with your Java source code file. If you use this method, the **SimpleApplet** source file looks like this:

```
import java.awt.*;
import java.applet.*;
/*
<applet code="SimpleApplet" width=200 height=60>
</applet>
*/
public class SimpleApplet extends Applet {
   public void paint(Graphics g) {
     g.drawString("A Simple Applet", 20, 20);
   }
}
```

With this approach, you can quickly iterate through applet development by using these three steps:

- 1. Edit a Java source file.
- 2. Compile your program.

3. Execute the applet viewer, specifying the name of your applet's source file. The applet viewer will encounter the APPLET tag within the comment and execute your applet.

The window produced by **SimpleApplet**, as displayed by the applet viewer, is shown in the following illustration:

🐁 Applet Viewer: Simp 💶 🗙
Applet
A Simple Applet
Applet started.

While the subject of applets is more fully discussed later in this book, here are the key points that you should remember now:

- Applets do not need a main() method.
- Applets must be run under an applet viewer or a Java-compatible browser.
- User I/O is not accomplished with Java's stream I/O classes. Instead, applets use the interface provided by the AWT or Swing.

The transient and volatile Modifiers

Java defines two interesting type modifiers: **transient** and **volatile**. These modifiers are used to handle somewhat specialized situations.

When an instance variable is declared as **transient**, then its value need not persist when an object is stored. For example:

```
class T {
  transient int a; // will not persist
  int b; // will persist
}
```

Here, if an object of type **T** is written to a persistent storage area, the contents of **a** would not be saved, but the contents of **b** would.

The **volatile** modifier tells the compiler that the variable modified by **volatile** can be changed unexpectedly by other parts of your program. One of these situations involves multithreaded programs. (You saw an example of this in Chapter 11.) In a multithreaded program, sometimes two or more threads share the same variable. For efficiency considerations, each thread can keep its own, private copy of such a shared variable. The real (or *master*) copy of the variable is updated at various times, such as when a **synchronized** method is entered. While this approach works fine, it may be inefficient at times. In some cases, all that really matters is that the master copy of a variable always reflects its current state. To ensure this, simply specify the variable as **volatile**, which tells the compiler that it must always use the master copy of a **volatile** variable (or, at least, always keep any private copies up-to-date with the master copy, and vice versa). Also, accesses to the master variable must be executed in the precise order in which they are executed on any private copy.

Using instanceof

Sometimes, knowing the type of an object during run time is useful. For example, you might have one thread of execution that generates various types of objects, and another thread that processes these objects. In this situation, it might be useful for the processing thread to know the type of each object when it receives it. Another situation in which knowledge of an object's type at run time is important involves casting. In Java, an invalid cast causes a run-time error. Many invalid casts can be caught at compile time. However, casts involving class hierarchies can produce invalid casts that can be detected only at run time. For example, a superclass called A can produce two subclasses, called B and C. Thus, casting a B object into type A or casting a C object into type A is legal, but casting a B object into type C (or vice versa) isn't legal. Because an object of type A can refer to objects of either B or C, how can you know, at run time, what type of object is actually being referred to before attempting the cast to type C? It could be an object of type A, B, or C. If it is an object of type B, a run-time exception will be thrown. Java provides the run-time operator **instanceof** to answer this question.

The instanceof operator has this general form:

objref instanceof type

Here, *objref* is a reference to an instance of a class, and *type* is a class type. If *objref* is of the specified type or can be cast into the specified type, then the **instanceof** operator evaluates to **true**. Otherwise, its result is **false**. Thus, **instanceof** is the means by which your program can obtain run-time type information about an object.

The following program demonstrates instanceof:

```
// Demonstrate instanceof operator.
class A {
  int i, j;
class B {
  int i, j;
class C extends A {
  int k;
class D extends A {
 int k;
}
class InstanceOf {
  public static void main(String args[]) {
    A = new A();
    B b = new B();
    C c = new C();
    D d = new D();
```

```
if(a instanceof A)
    System.out.println("a is instance of A");
  if(b instanceof B)
    System.out.println("b is instance of B");
  if(c instanceof C)
    System.out.println("c is instance of C");
  if(c instanceof A)
    System.out.println("c can be cast to A");
  if (a instance of C)
    System.out.println("a can be cast to C");
  System.out.println();
  // compare types of derived types
  A ob;
  ob = d; // A reference to d
  System.out.println("ob now refers to d");
  if(ob instanceof D)
    System.out.println("ob is instance of D");
  System.out.println();
  ob = c; // A reference to c
  System.out.println("ob now refers to c");
  if(ob instanceof D)
    System.out.println("ob can be cast to D");
  else
    System.out.println("ob cannot be cast to D");
  if (ob instanceof A)
    System.out.println("ob can be cast to A");
  System.out.println();
  // all objects can be cast to Object
  if(a instanceof Object)
    System.out.println("a may be cast to Object");
  if(b instanceof Object)
    System.out.println("b may be cast to Object");
  if(c instanceof Object)
    System.out.println("c may be cast to Object");
  if(d instanceof Object)
    System.out.println("d may be cast to Object");
}
```

The output from this program is shown here:

a is instance of A b is instance of B

}

```
c is instance of C
c can be cast to A
ob now refers to d
ob is instance of D
ob now refers to c
ob cannot be cast to D
ob can be cast to A
a may be cast to Object
b may be cast to Object
c may be cast to Object
d may be cast to Object
```

The **instanceof** operator isn't needed by most programs, because, generally, you know the type of object with which you are working. However, it can be very useful when you're writing generalized routines that operate on objects of a complex class hierarchy.

strictfp

A relatively new keyword is **strictfp**. With the creation of Java 2, the floating-point computation model was relaxed slightly. Specifically, the new model does not require the truncation of certain intermediate values that occur during a computation. This prevents overflow or underflow in some cases. By modifying a class or a method with **strictfp**, you ensure that floating-point calculations (and thus all truncations) take place precisely as they did in earlier versions of Java. When a class is modified by **strictfp**, all the methods in the class are also modified by **strictfp** automatically.

For example, the following fragment tells Java to use the original floating-point model for calculations in all methods defined within **MyClass**:

```
strictfp class MyClass { //...
```

Frankly, most programmers never need to use **strictfp**, because it affects only a very small class of problems.

Native Methods

Although it is rare, occasionally you may want to call a subroutine that is written in a language other than Java. Typically, such a subroutine exists as executable code for the CPU and environment in which you are working—that is, native code. For example, you may want to call a native code subroutine to achieve faster execution time. Or, you may want to use a specialized, third-party library, such as a statistical package. However, because Java programs are compiled to bytecode, which is then interpreted (or compiled on-the-fly) by the Java run-time system, it would seem impossible to call a native code subroutine from within your Java program. Fortunately, this conclusion is false. Java provides the **native**

keyword, which is used to declare native code methods. Once declared, these methods can be called from inside your Java program just as you call any other Java method.

To declare a native method, precede the method with the **native** modifier, but do not define any body for the method. For example:

```
public native int meth() ;
```

After you declare a native method, you must write the native method and follow a rather complex series of steps to link it with your Java code.

Most native methods are written in C. The mechanism used to integrate C code with a Java program is called the *Java Native Interface (JNI)*. A detailed description of the JNI is beyond the scope of this book, but the following description provides sufficient information for most applications.

NOTE The precise steps that you need to follow will vary between different Java environments. They also depend on the language that you are using to implement the native method. The following discussion assumes a Windows environment. The language used to implement the native method is C.

The easiest way to understand the process is to work through an example. To begin, enter the following short program, which uses a **native** method called **test()**:

```
// A simple example that uses a native method.
public class NativeDemo {
  int i;
  public static void main(String args[]) {
    NativeDemo ob = new NativeDemo();
    ob.i = 10;
    System.out.println("This is ob.i before the native method:" +
                       ob.i);
    ob.test(); // call a native method
    System.out.println("This is ob.i after the native method:" +
                       ob.i);
  }
  // declare native method
  public native void test() ;
  // load DLL that contains static method
  static {
    System.loadLibrary("NativeDemo");
}
```

Notice that the **test()** method is declared as **native** and has no body. This is the method that we will implement in C shortly. Also notice the **static** block. As explained earlier in this book, a **static** block is executed only once, when your program begins execution (or, more precisely, when its class is first loaded). In this case, it is used to load the dynamic link library that contains the native implementation of **test()**. (You will see how to create this library soon.)

The library is loaded by the **loadLibrary()** method, which is part of the **System** class. This is its general form:

static void loadLibrary(String filename)

Here, *filename* is a string that specifies the name of the file that holds the library. For the Windows environment, this file is assumed to have the .DLL extension.

After you enter the program, compile it to produce **NativeDemo.class**. Next, you must use **javah.exe** to produce one file: **NativeDemo.h**. (**javah.exe** is included in the JDK.) You will include **NativeDemo.h** in your implementation of **test()**. To produce **NativeDemo.h**, use the following command:

javah -jni NativeDemo

This command produces a header file called **NativeDemo.h**. This file must be included in the C file that implements **test()**. The output produced by this command is shown here:

```
/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class NativeDemo */
#ifndef Included NativeDemo
#define Included NativeDemo
#ifdef _ _cplusplus
extern "C" {
#endif
/*
* Class: NativeDemo
* Method: test
 * Signature: ()V
*/
JNIEXPORT void JNICALL Java NativeDemo test
 (JNIEnv *, jobject);
#ifdef _ _cplusplus
#endif
#endif
```

Pay special attention to the following line, which defines the prototype for the **test()** function that you will create:

JNIEXPORT void JNICALL Java_NativeDemo_test(JNIEnv *, jobject);

Notice that the name of the function is Java_NativeDemo_test(). You must use this as the name of the native function that you implement. That is, instead of creating a C function called test(), you will create one called Java_NativeDemo_test(). The NativeDemo component of the prefix is added because it identifies the test() method as being part of the NativeDemo class. Remember, another class may define its own native test() method that is completely different from the one declared by NativeDemo. Including the class name in the prefix provides a way to differentiate between differing versions. As a general rule, native functions will be given a name whose prefix includes the name of the class in which they are declared.

After producing the necessary header file, you can write your implementation of **test()** and store it in a file named **NativeDemo.c**:

```
/* This file contains the C version of the
   test() method.
* /
#include <jni.h>
#include "NativeDemo.h"
#include <stdio.h>
JNIEXPORT void JNICALL Java NativeDemo test (JNIEnv *env, jobject obj)
{
 jclass cls;
 jfieldID fid;
 jint i;
 printf("Starting the native method.\n");
 cls = (*env)->GetObjectClass(env, obj);
 fid = (*env)->GetFieldID(env, cls, "i", "I");
 if(fid == 0) {
   printf("Could not get field id.\n");
   return;
  }
 i = (*env) ->GetIntField(env, obj, fid);
 printf("i = d n", i);
  (*env) ->SetIntField(env, obj, fid, 2*i);
 printf("Ending the native method.\n");
}
```

Notice that this file includes **jni.h**, which contains interfacing information. This file is provided by your Java compiler. The header file **NativeDemo.h** was created by **javah** earlier.

In this function, the **GetObjectClass()** method is used to obtain a C structure that has information about the class **NativeDemo**. The **GetFieldID()** method returns a C structure with information about the field named "i" for the class. **GetIntField()** retrieves the original value of that field. **SetIntField()** stores an updated value in that field. (See the file **jni.h** for additional methods that handle other types of data.)

After creating **NativeDemo.c**, you must compile it and create a DLL. To do this by using the Microsoft C/C++ compiler, use the following command line. (You might need to specify the path to **jni.h** and its subordinate file **jni_md.h**.)

Cl /LD NativeDemo.c

This produces a file called **NativeDemo.dll**. Once this is done, you can execute the Java program, which will produce the following output:

```
This is ob.i before the native method: 10
Starting the native method.
i = 10
Ending the native method.
This is ob.i after the native method: 20
```

Problems with Native Methods

Native methods seem to offer great promise, because they enable you to gain access to an existing base of library routines, and they offer the possibility of faster run-time execution. But native methods also introduce two significant problems:

- **Potential security risk** Because a native method executes actual machine code, it can gain access to any part of the host system. That is, native code is not confined to the Java execution environment. This could allow a virus infection, for example. For this reason, applets cannot use native methods. Also, the loading of DLLs can be restricted, and their loading is subject to the approval of the security manager.
- Loss of portability Because the native code is contained in a DLL, it must be present on the machine that is executing the Java program. Further, because each native method is CPU- and operating systemdependent, each DLL is inherently nonportable. Thus, a Java application that uses native methods will be able to run only on a machine for which a compatible DLL has been installed.

The use of native methods should be restricted, because they render your Java programs nonportable and pose significant security risks.

Using assert

Another relatively new addition to Java is the keyword **assert**. It is used during program development to create an *assertion*, which is a condition that should be true during the execution of the program. For example, you might have a method that should always return a positive integer value. You might test this by asserting that the return value is greater than zero using an **assert** statement. At run time, if the condition actually is true, no other action takes place. However, if the condition is false, then an **AssertionError** is thrown. Assertions are often used during testing to verify that some expected condition is actually met. They are not usually used for released code.

The assert keyword has two forms. The first is shown here:

assert condition;

Here, *condition* is an expression that must evaluate to a Boolean result. If the result is true, then the assertion is true and no other action takes place. If the condition is false, then the assertion fails and a default **AssertionError** object is thrown.

The second form of assert is shown here:

assert condition : expr;

In this version, *expr* is a value that is passed to the **AssertionError** constructor. This value is converted to its string format and displayed if an assertion fails. Typically, you will specify a string for *expr*, but any non-**void** expression is allowed as long as it defines a reasonable string conversion.

Here is an example that uses **assert**. It verifies that the return value of **getnum()** is positive.

```
// Demonstrate assert.
class AssertDemo {
  static int val = 3;
  // Return an integer.
  static int getnum() {
    return val--;
  }
  public static void main(String args[])
  {
    int n;
    for(int i=0; i < 10; i++) {</pre>
      n = qetnum();
      assert n > 0; // will fail when n is 0
      System.out.println("n is " + n);
    }
  }
}
```

To enable assertion checking at run time, you must specify the **-ea** option. For example, to enable assertions for **AssertDemo**, execute it using this line:

```
java -ea AssertDemo
```

After compiling and running as just described, the program creates the following output:

In **main()**, repeated calls are made to the method **getnum()**, which returns an integer value. The return value of **getnum()** is assigned to **n** and then tested using this **assert** statement:

assert n > 0; // will fail when n is 0

This statement will fail when **n** equals 0, which it will after the fourth call. When this happens, an exception is thrown.

As explained, you can specify the message displayed when an assertion fails. For example, if you substitute

assert n > 0 : "n is negative!";

for the assertion in the preceding program, then the following output will be generated:

One important point to understand about assertions is that you must not rely on them to perform any action actually required by the program. The reason is that normally, released code will be run with assertions disabled. For example, consider this variation of the preceding program:

```
// A poor way to use assert!!!
class AssertDemo {
  // get a random number generator
  static int val = 3;
  // Return an integer.
  static int getnum() {
    return val--;
  }
  public static void main(String args[])
    int n = 0;
    for(int i=0; i < 10; i++) {</pre>
      assert (n = getnum()) > 0; // This is not a good idea!
      System.out.println("n is " + n);
    }
  }
}
```

In this version of the program, the call to **getnum()** is moved inside the **assert** statement. Although this works fine if assertions are enabled, it will cause a malfunction when assertions are disabled, because the call to **getnum()** will never be executed! In fact, **n** must now be initialized, because the compiler will recognize that it might not be assigned a value by the **assert** statement.

Assertions are a good addition to Java because they streamline the type of error checking that is common during development. For example, prior to **assert**, if you wanted to verify that **n** was positive in the preceding program, you had to use a sequence of code similar to this:

```
if(n < 0) {
   System.out.println("n is negative!");
   return; // or throw an exception
}</pre>
```

With **assert**, you need only one line of code. Furthermore, you don't have to remove the **assert** statements from your released code.

Assertion Enabling and Disabling Options

When executing code, you can disable assertions by using the **-da** option. You can enable or disable a specific package by specifying its name after the **-ea** or **-da** option. For example, to enable assertions in a package called **MyPack**, use

```
-ea:MyPack
```

To disable assertions in MyPack, use

```
-da:MyPack
```

To enable or disable all subpackages of a package, follow the package name with three dots. For example,

-ea:MyPack...

You can also specify a class with the **-ea** or **-da** option. For example, this enables **AssertDemo** individually:

-ea:AssertDemo

Static Import

JDK 5 added a new feature to Java called *static import* that expands the capabilities of the **import** keyword. By following **import** with the keyword **static**, an **import** statement can be used to import the static members of a class or interface. When using static import, it is possible to refer to static members directly by their names, without having to qualify them with the name of their class. This simplifies and shortens the syntax required to use a static member.

To understand the usefulness of static import, let's begin with an example that does *not* use it. The following program computes the hypotenuse of a right triangle. It uses two static methods from Java's built-in math class **Math**, which is part of **java.lang**. The first is **Math.pow()**, which returns a value raised to a specified power. The second is **Math.sqrt()**, which returns the square root of its argument.

```
// Compute the hypotenuse of a right triangle.
class Hypot {
  public static void main(String args[]) {
    double side1, side2;
    double hypot;
```

ļ

```
side1 = 3.0;
side2 = 4.0;
// Notice how sqrt() and pow() must be qualified by
// their class name, which is Math.
hypot = Math.sqrt(Math.pow(side1, 2) +
Math.pow(side2, 2));
System.out.println("Given sides of lengths " +
side1 + " and " + side2 +
" the hypotenuse is " +
hypot);
}
```

Because **pow()** and **sqrt()** are static methods, they must be called through the use of their class' name, **Math**. This results in a somewhat unwieldy hypotenuse calculation:

```
hypot = Math.sqrt(Math.pow(side1, 2) +
Math.pow(side2, 2));
```

As this simple example illustrates, having to specify the class name each time **pow()** or **sqrt()** (or any of Java's other math methods, such as **sin()**, **cos()**, and **tan()**) is used can grow tedious.

You can eliminate the tedium of specifying the class name through the use of static import, as shown in the following version of the preceding program:

```
// Use static import to bring sqrt() and pow() into view.
import static java.lang.Math.sqrt;
import static java.lang.Math.pow;
// Compute the hypotenuse of a right triangle.
class Hypot {
 public static void main(String args[]) {
   double side1, side2;
   double hypot;
    side1 = 3.0;
    side2 = 4.0;
    // Here, sqrt() and pow() can be called by themselves,
    // without their class name.
   hypot = sqrt(pow(side1, 2) + pow(side2, 2));
    System.out.println("Given sides of lengths " +
                       side1 + " and " + side2 +
                       " the hypotenuse is " +
                       hypot);
 }
}
```

In this version, the names **sqrt** and **pow** are brought into view by these static import statements:

```
import static java.lang.Math.sqrt;
import static java.lang.Math.pow;
```

After these statements, it is no longer necessary to qualify **sqrt()** or **pow()** with their class name. Therefore, the hypotenuse calculation can more conveniently be specified, as shown here:

hypot = sqrt(pow(side1, 2) + pow(side2, 2));

As you can see, this form is considerably more readable.

There are two general forms of the **import static** statement. The first, which is used by the preceding example, brings into view a single name. Its general form is shown here:

import static *pkg.type-name.static-member-name*;

Here, *type-name* is the name of a class or interface that contains the desired static member. Its full package name is specified by *pkg*. The name of the member is specified by *static-member-name*.

The second form of static import imports all static members of a given class or interface. Its general form is shown here:

import static pkg.type-name.*;

If you will be using many static methods or fields defined by a class, then this form lets you bring them into view without having to specify each individually. Therefore, the preceding program could have used this single **import** statement to bring both **pow()** and **sqrt()** (and *all other* static members of **Math**) into view:

import static java.lang.Math.*;

Of course, static import is not limited just to the **Math** class or just to methods. For example, this brings the static field **System.out** into view:

import static java.lang.System.out;

After this statement, you can output to the console without having to qualify **out** with **System**, as shown here:

out.println("After importing System.out, you can use out directly.");

Whether importing **System.out** as just shown is a good idea is subject to debate. Although it does shorten the statement, it is no longer instantly clear to anyone reading the program that the **out** being referred to is **System.out**.

One other point: in addition to importing the static members of classes and interfaces defined by the Java API, you can also use static import to import the static members of classes and interfaces that you create.

As convenient as static import can be, it is important not to abuse it. Remember, the reason that Java organizes its libraries into packages is to avoid namespace collisions. When you import static members, you are bringing those members into the global namespace. Thus, you are increasing the potential for namespace conflicts and for the inadvertent hiding of other names. If you are using a static member once or twice in the program, it's best not to import it. Also, some static names, such as **System.out**, are so recognizable that you might not want to import them. Static import is designed for those situations in which you are using a static member repeatedly, such as when performing a series of mathematical computations. In essence, you should use, but not abuse, this feature.

Invoking Overloaded Constructors Through this()

When working with overloaded constructors, it is sometimes useful for one constructor to invoke another. In Java, this is accomplished by using another form of the **this** keyword. The general form is shown here:

```
this(arg-list)
```

When **this()** is executed, the overloaded constructor that matches the parameter list specified by *arg-list* is executed first. Then, if there are any statements inside the original constructor, they are executed. The call to **this()** must be the first statement within the constructor.

To understand how **this()** can be used, let's work through a short example. First, consider the following class that *does not* use **this()**:

```
class MyClass {
  int a;
  int b;
  // initialize a and b individually
  MyClass(int i, int j) {
    a = i;
    b = j;
  }
  // initialize a and b to the same value
  MyClass(int i) {
   a = i;
    b = i;
  }
  // give a and b default values of 0
  MyClass() {
   a = 0;
    b = 0;
  }
}
```

This class contains three constructors, each of which initializes the values of **a** and **b**. The first is passed individual values for **a** and **b**. The second is passed just one value, which is assigned to both **a** and **b**. The third gives **a** and **b** default values of zero.

By using this(), it is possible to rewrite MyClass as shown here:

```
class MyClass {
 int a;
 int b;
 // initialize a and b individually
 MyClass(int i, int j) {
   a = i;
   b = j;
  }
 // initialize a and b to the same value
 MyClass(int i) {
   this(i, i); // invokes MyClass(i, i)
 // give a and b default values of 0
 MyClass() {
   this(0); // invokes MyClass(0)
 }
}
```

In this version of **MyClass**, the only constructor that actually assigns values to the **a** and **b** fields is **MyClass(int, int)**. The other two constructors simply invoke that constructor (either directly or indirectly) through **this()**. For example, consider what happens when this statement executes:

```
MyClass mc = new MyClass(8);
```

The call to **MyClass(8)** causes **this(8, 8)** to be executed, which translates into a call to **MyClass(8, 8)**, because this is the version of the **MyClass** constructor whose parameter list matches the arguments passed via **this()**. Now, consider the following statement, which uses the default constructor:

```
MyClass mc2 = new MyClass();
```

In this case, **this(0)** is called. This causes **MyClass(0)** to be invoked because it is the constructor with the matching parameter list. Of course, **MyClass(0)** then calls **MyClass(0, 0)** as just described.

One reason why invoking overloaded constructors through **this()** can be useful is that it can prevent the unnecessary duplication of code. In many cases, reducing duplicate code decreases the time it takes to load your class because often the object code is smaller. This is especially important for programs delivered via the Internet in which load times are an issue. Using **this()** can also help structure your code when constructors contain a large amount of duplicate code.

However, you need to be careful. Constructors that call **this()** will execute a bit slower than those that contain all of their initialization code inline. This is because the call and return mechanism used when the second constructor is invoked adds overhead. If your class will be used to create only a handful of objects, or if the constructors in the class that call **this()** will be seldom used, then this decrease in run-time performance is probably insignificant. However, if your class will be used to create a large number of objects (on the order of thousands) during program execution, then the negative impact of the increased overhead could be meaningful. Because object creation affects all users of your class, there will be cases in which you must carefully weigh the benefits of faster load time against the increased time it takes to create an object.

Here is another consideration: for very short constructors, such as those used by **MyClass**, there is often little difference in the size of the object code whether **this()** is used or not. (Actually, there are cases in which no reduction in the size of the object code is achieved.) This is because the bytecode that sets up and returns from the call to **this()** adds instructions to the object file. Therefore, in these types of situations, even though duplicate code is eliminated, using **this()** will not obtain significant savings in terms of load time. However, the added cost in terms of overhead to each object's construction will still be incurred. Therefore, **this()** is most applicable to constructors that contain large amounts of initialization code, not for those that simply set the value of a handful of fields.

There are two restrictions you need to keep in mind when using **this()**. First, you cannot use any instance variable of the constructor's class in a call to **this()**. Second, you cannot use **super()** and **this()** in the same constructor because each must be the first statement in the constructor.

CHAPTER

Generics

Second, it caused changes to many of the classes and methods in the core API. Because generics represented such a large change to the language, some programmers were reluctant to adopt its use. However, with the release of JDK 6, generics can no longer be ignored. Simply put, if you will be programming in Java SE 6, you will be using generics. Fortunately, generics are not difficult to use, and they provide significant benefits for the Java programmer.

Through the use of generics, it is possible to create classes, interfaces, and methods that will work in a type-safe manner with various kinds of data. Many algorithms are logically the same no matter what type of data they are being applied to. For example, the mechanism that supports a stack is the same whether that stack is storing items of type **Integer**, **String**, **Object**, or **Thread**. With generics, you can define an algorithm once, independently of any specific type of data, and then apply that algorithm to a wide variety of data types without any additional effort. The expressive power generics add to the language fundamentally changes the way that Java code is written.

Perhaps the one feature of Java that has been most significantly affected by generics is the *Collections Framework*. The Collections Framework is part of the Java API and is described in detail in Chapter 17, but a brief mention is useful now. A *collection* is a group of objects. The Collections Framework defines several classes, such as lists and maps, that manage collections. The collection classes have always been able to work with any type of object. The benefit that generics add is that the collection classes can now be used with complete type safety. Thus, in addition to providing a powerful, new language element, generics also enabled an existing feature to be substantially improved. This is why generics represent such an important addition to Java.

This chapter describes the syntax, theory, and use of generics. It also shows how generics provide type safety for some previously difficult cases. Once you have completed this chapter, you will want to examine Chapter 17, which covers the Collections Framework. There you will find many examples of generics at work.

REMEMBER Generics were added by JDK 5. Source code using generics cannot be compiled by earlier versions of *javac*.

What Are Generics?

At its core, the term *generics* means *parameterized types*. Parameterized types are important because they enable you to create classes, interfaces, and methods in which the type of data upon which they operate is specified as a parameter. Using generics, it is possible to create a single class, for example, that automatically works with different types of data. A class, interface, or method that operates on a parameterized type is called *generic*, as in *generic class* or *generic method*.

It is important to understand that Java has always given you the ability to create generalized classes, interfaces, and methods by operating through references of type **Object**. Because **Object** is the superclass of all other classes, an **Object** reference can refer to any type object. Thus, in pre-generics code, generalized classes, interfaces, and methods used **Object** references to operate on various types of objects. The problem was that they could not do so with type safety.

Generics add the type safety that was lacking. They also streamline the process, because it is no longer necessary to explicitly employ casts to translate between **Object** and the type of data that is actually being operated upon. With generics, all casts are automatic and implicit. Thus, generics expand your ability to reuse code and let you do so safely and easily.

NOTE A Warning to C++ Programmers: Although generics are similar to templates in C++, they are not the same. There are some fundamental differences between the two approaches to generic types. If you have a background in C++, it is important not to jump to conclusions about how generics work in Java.

A Simple Generics Example

Let's begin with a simple example of a generic class. The following program defines two classes. The first is the generic class **Gen**, and the second is **GenDemo**, which uses **Gen**.

```
// A simple generic class.
// Here, T is a type parameter that
// will be replaced by a real type
// when an object of type Gen is created.
class Gen<T> {
 T ob; // declare an object of type T
 // Pass the constructor a reference to
 // an object of type T.
 Gen(T o) {
   ob = o;
 // Return ob.
 T getob() {
   return ob;
  }
 // Show type of T.
 void showType() {
   System.out.println("Type of T is " +
                       ob.getClass().getName());
  }
}
```

```
// Demonstrate the generic class.
class GenDemo {
 public static void main(String args[]) {
    // Create a Gen reference for Integers.
    Gen<Integer> iOb;
    // Create a Gen<Integer> object and assign its
    // reference to iOb. Notice the use of autoboxing
    // to encapsulate the value 88 within an Integer object.
    iOb = new Gen<Integer>(88);
    // Show the type of data used by iOb.
    iOb.showType();
    // Get the value in iOb. Notice that
    // no cast is needed.
    int v = iOb.getob();
    System.out.println("value: " + v);
    System.out.println();
    // Create a Gen object for Strings.
    Gen<String> strOb = new Gen<String>("Generics Test");
    // Show the type of data used by strOb.
    strOb.showType();
    // Get the value of strOb. Again, notice
    // that no cast is needed.
   String str = strOb.getob();
   System.out.println("value: " + str);
  }
}
```

The output produced by the program is shown here:

Type of T is java.lang.Integer value: 88 Type of T is java.lang.String value: Generics Test

Let's examine this program carefully.

First, notice how **Gen** is declared by the following line:

class Gen<T> $\{$

Here, **T** is the name of a *type parameter*. This name is used as a placeholder for the actual type that will be passed to **Gen** when an object is created. Thus, **T** is used within **Gen** whenever the type parameter is needed. Notice that **T** is contained within < >. This syntax can be generalized. Whenever a type parameter is being declared, it is specified within angle brackets. Because **Gen** uses a type parameter, **Gen** is a generic class, which is also called a *parameterized type*.

Next, T is used to declare an object called **ob**, as shown here:

```
T ob; // declare an object of type T
```

As explained, **T** is a placeholder for the actual type that will be specified when a **Gen** object is created. Thus, **ob** will be an object of the type passed to **T**. For example, if type **String** is passed to **T**, then in that instance, **ob** will be of type **String**.

Now consider Gen's constructor:

```
Gen(T o) {
    ob = o;
}
```

Notice that its parameter, **o**, is of type **T**. This means that the actual type of **o** is determined by the type passed to **T** when a **Gen** object is created. Also, because both the parameter **o** and the member variable **ob** are of type **T**, they will both be of the same actual type when a **Gen** object is created.

The type parameter **T** can also be used to specify the return type of a method, as is the case with the **getob()** method, shown here:

```
T getob() {
   return ob;
}
```

Because ob is also of type T, its type is compatible with the return type specified by getob().

The **showType()** method displays the type of **T** by calling **getName()** on the **Class** object returned by the call to **getClass()** on **ob**. The **getClass()** method is defined by **Object** and is thus a member of all class types. It returns a **Class** object that corresponds to the type of the class of the object on which it is called. **Class** defines the **getName()** method, which returns a string representation of the class name.

The **GenDemo** class demonstrates the generic **Gen** class. It first creates a version of **Gen** for integers, as shown here:

```
Gen<Integer> iOb;
```

Look closely at this declaration. First, notice that the type **Integer** is specified within the angle brackets after **Gen**. In this case, **Integer** is a *type argument* that is passed to **Gen**'s type parameter, **T**. This effectively creates a version of **Gen** in which all references to **T** are translated into references to **Integer**. Thus, for this declaration, **ob** is of type **Integer**, and the return type of **getob()** is of type **Integer**.

Before moving on, it's necessary to state that the Java compiler does not actually create different versions of **Gen**, or of any other generic class. Although it's helpful to think in these terms, it is not what actually happens. Instead, the compiler removes all generic type information, substituting the necessary casts, to make your code *behave as if* a specific version of **Gen** were created. Thus, there is really only one version of **Gen** that actually exists in your program. The process of removing generic type information is called *erasure*, and we will return to this topic later in this chapter.

The next line assigns to **iOb** a reference to an instance of an **Integer** version of the **Gen** class:

```
iOb = new Gen<Integer>(88);
```

Notice that when the **Gen** constructor is called, the type argument **Integer** is also specified. This is necessary because the type of the object (in this case **iOb**) to which the reference is being assigned is of type **Gen**<**Integer**>. Thus, the reference returned by **new** must also be of type **Gen**<**Integer**>. If it isn't, a compile-time error will result. For example, the following assignment will cause a compile-time error:

```
iOb = new Gen<Double>(88.0); // Error!
```

Because **iOb** is of type **Gen<Integer>**, it can't be used to refer to an object of **Gen<Double>**. This type checking is one of the main benefits of generics because it ensures type safety.

As the comments in the program state, the assignment

```
iOb = new Gen<Integer>(88);
```

makes use of autoboxing to encapsulate the value 88, which is an **int**, into an **Integer**. This works because **Gen<Integer>** creates a constructor that takes an **Integer** argument. Because an **Integer** is expected, Java will automatically box 88 inside one. Of course, the assignment could also have been written explicitly, like this:

```
iOb = new Gen<Integer>(new Integer(88));
```

However, there would be no benefit to using this version.

The program then displays the type of **ob** within **iOb**, which is **Integer**. Next, the program obtains the value of **ob** by use of the following line:

```
int v = iOb.getob();
```

Because the return type of **getob()** is **T**, which was replaced by **Integer** when **iOb** was declared, the return type of **getob()** is also **Integer**, which unboxes into **int** when assigned to **v** (which is an **int**). Thus, there is no need to cast the return type of **getob()** to **Integer**. Of course, it's not necessary to use the auto-unboxing feature. The preceding line could have been written like this, too:

```
int v = iOb.getob().intValue();
```

However, the auto-unboxing feature makes the code more compact.

Next, GenDemo declares an object of type Gen<String>:

```
Gen<String> strOb = new Gen<String>("Generics Test");
```

Because the type argument is **String**, **String** is substituted for **T** inside **Gen**. This creates (conceptually) a **String** version of **Gen**, as the remaining lines in the program demonstrate.

Generics Work Only with Objects

When declaring an instance of a generic type, the type argument passed to the type parameter must be a class type. You cannot use a primitive type, such as **int** or **char**. For example, with **Gen**, it is possible to pass any class type to **T**, but you cannot pass a primitive type to a type parameter. Therefore, the following declaration is illegal:

Gen<int> strOb = new Gen<int>(53); // Error, can't use primitive type

Of course, not being able to specify a primitive type is not a serious restriction because you can use the type wrappers (as the preceding example did) to encapsulate a primitive type. Further, Java's autoboxing and auto-unboxing mechanism makes the use of the type wrapper transparent.

Generic Types Differ Based on Their Type Arguments

A key point to understand about generic types is that a reference of one specific version of a generic type is not type compatible with another version of the same generic type. For example, assuming the program just shown, the following line of code is in error and will not compile:

iOb = strOb; // Wrong!

Even though both **iOb** and **strOb** are of type **Gen<T>**, they are references to different types because their type parameters differ. This is part of the way that generics add type safety and prevent errors.

How Generics Improve Type Safety

At this point, you might be asking yourself the following question: Given that the same functionality found in the generic **Gen** class can be achieved without generics, by simply specifying **Object** as the data type and employing the proper casts, what is the benefit of making **Gen** generic? The answer is that generics automatically ensure the type safety of all operations involving **Gen**. In the process, they eliminate the need for you to enter casts and to type-check code by hand.

To understand the benefits of generics, first consider the following program that creates a non-generic equivalent of **Gen**:

```
// NonGen is functionally equivalent to Gen
// but does not use generics.
class NonGen {
   Object ob; // ob is now of type Object
   // Pass the constructor a reference to
   // an object of type Object
   NonGen(Object o) {
      ob = 0;
   }
   // Return type Object.
   Object getob() {
      return ob;
   }
}
```

```
}
 // Show type of ob.
 void showType() {
    System.out.println("Type of ob is " +
                       ob.getClass().getName());
 }
}
// Demonstrate the non-generic class.
class NonGenDemo {
 public static void main(String args[]) {
   NonGen iOb;
    // Create NonGen Object and store
    // an Integer in it. Autoboxing still occurs.
    iOb = new NonGen(88);
    // Show the type of data used by iOb.
    iOb.showType();
    // Get the value of iOb.
    // This time, a cast is necessary.
    int v = (Integer) iOb.getob();
    System.out.println("value: " + v);
    System.out.println();
    // Create another NonGen object and
    // store a String in it.
    NonGen strOb = new NonGen("Non-Generics Test");
    // Show the type of data used by strOb.
    strOb.showType();
    // Get the value of strOb.
    // Again, notice that a cast is necessary.
    String str = (String) strOb.getob();
    System.out.println("value: " + str);
    // This compiles, but is conceptually wrong!
    iOb = strOb;
   v = (Integer) iOb.getob(); // run-time error!
  }
}
```

There are several things of interest in this version. First, notice that **NonGen** replaces all uses of **T** with **Object**. This makes **NonGen** able to store any type of object, as can the generic version. However, it also prevents the Java compiler from having any real knowledge about the type of data actually stored in **NonGen**, which is bad for two reasons. First, explicit casts must be employed to retrieve the stored data. Second, many kinds of type mismatch errors cannot be found until run time. Let's look closely at each problem.

Notice this line:

int v = (Integer) iOb.getob();

Because the return type of **getob()** is **Object**, the cast to **Integer** is necessary to enable that value to be auto-unboxed and stored in **v**. If you remove the cast, the program will not compile. With the generic version, this cast was implicit. In the non-generic version, the cast must be explicit. This is not only an inconvenience, but also a potential source of error.

Now, consider the following sequence from near the end of the program:

```
// This compiles, but is conceptually wrong!
iOb = strOb;
v = (Integer) iOb.getob(); // run-time error!
```

Here, **strOb** is assigned to **iOb**. However, **strOb** refers to an object that contains a string, not an integer. This assignment is syntactically valid because all **NonGen** references are the same, and any **NonGen** reference can refer to any other **NonGen** object. However, the statement is semantically wrong, as the next line shows. Here, the return type of **getob()** is cast to **Integer**, and then an attempt is made to assign this value to **v**. The trouble is that **iOb** now refers to an object that stores a **String**, not an **Integer**. Unfortunately, without the use of generics, the Java compiler has no way to know this. Instead, a run-time exception occurs when the cast to **Integer** is attempted. As you know, it is extremely bad to have run-time exceptions occur in your code!

The preceding sequence can't occur when generics are used. If this sequence were attempted in the generic version of the program, the compiler would catch it and report an error, thus preventing a serious bug that results in a run-time exception. The ability to create type-safe code in which type-mismatch errors are caught at compile time is a key advantage of generics. Although using **Object** references to create "generic" code has always been possible, that code was not type safe, and its misuse could result in run-time exceptions. Generics prevent this from occurring. In essence, through generics, what were once run-time errors have become compile-time errors. This is a major advantage.

A Generic Class with Two Type Parameters

You can declare more than one type parameter in a generic type. To specify two or more type parameters, simply use a comma-separated list. For example, the following **TwoGen** class is a variation of the **Gen** class that has two type parameters:

```
// A simple generic class with two type
// parameters: T and V.
class TwoGen<T, V> {
  T ob1;
  V ob2;
  // Pass the constructor a reference to
  // an object of type T and an object of type V.
  TwoGen(T o1, V o2) {
    ob1 = o1;
    ob2 = o2;
  }
```

```
// Show types of T and V.
  void showTypes() {
    System.out.println("Type of T is " +
                       obl.getClass().getName());
    System.out.println("Type of V is " +
                       ob2.getClass().getName());
  }
  T getob1() {
    return ob1;
  }
  V getob2() {
   return ob2;
  }
}
// Demonstrate TwoGen.
class SimpGen {
  public static void main(String args[]) {
    TwoGen<Integer, String> tgObj =
      new TwoGen<Integer, String>(88, "Generics");
    // Show the types.
    tgObj.showTypes();
    // Obtain and show values.
    int v = tgObj.getob1();
    System.out.println("value: " + v);
    String str = tqObj.getob2();
    System.out.println("value: " + str);
  }
}
```

The output from this program is shown here:

```
Type of T is java.lang.Integer
Type of V is java.lang.String
value: 88
value: Generics
```

Notice how TwoGen is declared:

class TwoGen<T, V> {

It specifies two type parameters: **T** and **V**, separated by a comma. Because it has two type parameters, two type arguments must be passed to **TwoGen** when an object is created, as shown next:

```
TwoGen<Integer, String> tgObj =
    new TwoGen<Integer, String>(88, "Generics");
```

In this case, **Integer** is substituted for **T**, and **String** is substituted for **V**.

Although the two type arguments differ in this example, it is possible for both types to be the same. For example, the following line of code is valid:

TwoGen<String, String> x = new TwoGen<String, String>("A", "B");

In this case, both T and V would be of type **String**. Of course, if the type arguments were always the same, then two type parameters would be unnecessary.

The General Form of a Generic Class

The generics syntax shown in the preceding examples can be generalized. Here is the syntax for declaring a generic class:

```
class class-name<type-param-list> { / / ...
```

Here is the syntax for declaring a reference to a generic class:

```
class-name<type-arg-list> var-name =
    new class-name<type-arg-list>(cons-arg-list);
```

Bounded Types

In the preceding examples, the type parameters could be replaced by any class type. This is fine for many purposes, but sometimes it is useful to limit the types that can be passed to a type parameter. For example, assume that you want to create a generic class that contains a method that returns the average of an array of numbers. Furthermore, you want to use the class to obtain the average of an array of any type of number, including integers, floats, and doubles. Thus, you want to specify the type of the numbers generically, using a type parameter. To create such a class, you might try something like this:

```
// Stats attempts (unsuccessfully) to
// create a generic class that can compute
// the average of an array of numbers of
// any given type.
11
// The class contains an error!
class Stats<T> {
 T[] nums; // nums is an array of type T
 // Pass the constructor a reference to
 // an array of type T.
 Stats(T[] o) \{
   nums = o_i
  }
  // Return type double in all cases.
 double average() {
    double sum = 0.0;
```

```
for(int i=0; i < nums.length; i++)
    sum += nums[i].doubleValue(); // Error!!!
    return sum / nums.length;
}</pre>
```

In Stats, the average() method attempts to obtain the double version of each number in the nums array by calling doubleValue(). Because all numeric classes, such as Integer and Double, are subclasses of Number, and Number defines the doubleValue() method, this method is available to all numeric wrapper classes. The trouble is that the compiler has no way to know that you are intending to create Stats objects using only numeric types. Thus, when you try to compile Stats, an error is reported that indicates that the doubleValue() method is unknown. To solve this problem, you need some way to tell the compiler that you intend to pass only numeric types to T. Furthermore, you need some way to *ensure* that *only* numeric types are actually passed.

To handle such situations, Java provides *bounded types*. When specifying a type parameter, you can create an upper bound that declares the superclass from which all type arguments must be derived. This is accomplished through the use of an **extends** clause when specifying the type parameter, as shown here:

<T extends *superclass*>

This specifies that *T* can only be replaced by *superclass*, or subclasses of *superclass*. Thus, *superclass* defines an inclusive, upper limit.

You can use an upper bound to fix the **Stats** class shown earlier by specifying **Number** as an upper bound, as shown here:

```
// In this version of Stats, the type argument for
// T must be either Number, or a class derived
// from Number.
class Stats<T extends Number> {
  T[] nums; // array of Number or subclass
  // Pass the constructor a reference to
  // an array of type Number or subclass.
  Stats(T[] o) {
   nums = o_i
  }
  // Return type double in all cases.
  double average() {
    double sum = 0.0;
    for(int i=0; i < nums.length; i++)</pre>
      sum += nums[i].doubleValue();
    return sum / nums.length;
}
```

```
// Demonstrate Stats.
class BoundsDemo {
 public static void main(String args[]) {
    Integer inums [] = \{ 1, 2, 3, 4, 5 \};
    Stats<Integer> iob = new Stats<Integer>(inums);
    double v = iob.average();
    System.out.println("iob average is " + v);
    Double dnums[] = { 1.1, 2.2, 3.3, 4.4, 5.5 };
    Stats<Double> dob = new Stats<Double>(dnums);
    double w = dob.average();
    System.out.println("dob average is " + w);
    // This won't compile because String is not a
   // subclass of Number.
    String strs[] = { "1", "2", "3", "4", "5" };
11
//
     Stats<String> strob = new Stats<String>(strs);
11
      double x = strob.average();
11
      System.out.println("strob average is " + v);
 }
}
```

The output is shown here:

Average is 3.0 Average is 3.3

Notice how Stats is now declared by this line:

```
class Stats<T extends Number> {
```

Because the type **T** is now bounded by **Number**, the Java compiler knows that all objects of type **T** can call **doubleValue()** because it is a method declared by **Number**. This is, by itself, a major advantage. However, as an added bonus, the bounding of **T** also prevents nonnumeric **Stats** objects from being created. For example, if you try removing the comments from the lines at the end of the program, and then try recompiling, you will receive compile-time errors because **String** is not a subclass of **Number**.

In addition to using a class type as a bound, you can also use an interface type. In fact, you can specify multiple interfaces as bounds. Furthermore, a bound can include both a class type and one or more interfaces. In this case, the class type must be specified first. When a bound includes an interface type, only type arguments that implement that interface are legal. When specifying a bound that has a class and an interface, or multiple interfaces, use the & operator to connect them. For example,

```
class Gen<T extends MyClass & MyInterface> { // ...
```
Here, **T** is bounded by a class called **MyClass** and an interface called **MyInterface**. Thus, any type argument passed to **T** must be a subclass of **MyClass** and implement **MyInterface**.

Using Wildcard Arguments

As useful as type safety is, sometimes it can get in the way of perfectly acceptable constructs. For example, given the **Stats** class shown at the end of the preceding section, assume that you want to add a method called **sameAvg()** that determines if two **Stats** objects contain arrays that yield the same average, no matter what type of numeric data each object holds. For example, if one object contains the **double** values 1.0, 2.0, and 3.0, and the other object contains the integer values 2, 1, and 3, then the averages will be the same. One way to implement **sameAvg()** is to pass it a **Stats** argument, and then compare the average of that argument against the invoking object, returning true only if the averages are the same. For example, you want to be able to call **sameAvg()**, as shown here:

```
Integer inums[] = { 1, 2, 3, 4, 5 };
Double dnums[] = { 1.1, 2.2, 3.3, 4.4, 5.5 };
Stats<Integer> iob = new Stats<Integer>(inums);
Stats<Double> dob = new Stats<Double>(dnums);
if(iob.sameAvg(dob))
System.out.println("Averages are the same.");
else
System.out.println("Averages differ.");
```

At first, creating **sameAvg()** seems like an easy problem. Because **Stats** is generic and its **average()** method can work on any type of **Stats** object, it seems that creating **sameAvg()** would be straightforward. Unfortunately, trouble starts as soon as you try to declare a parameter of type **Stats**. Because **Stats** is a parameterized type, what do you specify for **Stats**' type parameter when you declare a parameter of that type?

At first, you might think of a solution like this, in which T is used as the type parameter:

```
// This won't work!
// Determine if two averages are the same.
boolean sameAvg(Stats<T> ob) {
    if(average() == ob.average())
       return true;
    return false;
}
```

The trouble with this attempt is that it will work only with other **Stats** objects whose type is the same as the invoking object. For example, if the invoking object is of type **Stats<Integer>**, then the parameter **ob** must also be of type **Stats<Integer>**. It can't be used to compare the average of an object of type **Stats<Double>** with the average of an object of type **Stats<Short>**, for example. Therefore, this approach won't work except in a very narrow context and does not yield a general (that is, generic) solution.

To create a generic **sameAvg()** method, you must use another feature of Java generics: the *wildcard* argument. The wildcard argument is specified by the **?**, and it represents an unknown type. Using a wildcard, here is one way to write the **sameAvg()** method:

```
// Determine if two averages are the same.
// Notice the use of the wildcard.
boolean sameAvg(Stats<?> ob) {
    if(average() == ob.average())
       return true;
    return false;
}
```

Here, **Stats**<?> matches any **Stats** object, allowing any two **Stats** objects to have their averages compared. The following program demonstrates this:

```
// Use a wildcard.
class Stats<T extends Number> {
 T[] nums; // array of Number or subclass
 // Pass the constructor a reference to
 // an array of type Number or subclass.
 Stats(T[] o) \{
   nums = o_i
  }
 // Return type double in all cases.
 double average() {
   double sum = 0.0;
    for(int i=0; i < nums.length; i++)</pre>
      sum += nums[i].doubleValue();
   return sum / nums.length;
  }
 // Determine if two averages are the same.
 // Notice the use of the wildcard.
 boolean sameAvg(Stats<?> ob) {
   if(average() == ob.average())
     return true;
   return false;
 }
}
// Demonstrate wildcard.
class WildcardDemo {
 public static void main(String args[]) {
    Integer inums[] = \{ 1, 2, 3, 4, 5 \};
   Stats<Integer> iob = new Stats<Integer>(inums);
    double v = iob.average();
    System.out.println("iob average is " + v);
```

```
Double dnums[] = { 1.1, 2.2, 3.3, 4.4, 5.5 };
  Stats<Double> dob = new Stats<Double>(dnums);
  double w = dob.average();
  System.out.println("dob average is " + w);
  Float fnums[] = { 1.0F, 2.0F, 3.0F, 4.0F, 5.0F };
  Stats<Float> fob = new Stats<Float>(fnums);
  double x = fob.average();
  System.out.println("fob average is " + x);
  // See which arrays have same average.
  System.out.print("Averages of iob and dob ");
  if(iob.sameAvg(dob))
    System.out.println("are the same.");
  else
    System.out.println("differ.");
  System.out.print("Averages of iob and fob ");
  if (iob.sameAvg(fob))
    System.out.println("are the same.");
  else
    System.out.println("differ.");
}
```

The output is shown here:

}

```
iob average is 3.0
dob average is 3.3
fob average is 3.0
Averages of iob and dob differ.
Averages of iob and fob are the same.
```

One last point: It is important to understand that the wildcard does not affect what type of **Stats** objects can be created. This is governed by the **extends** clause in the **Stats** declaration. The wildcard simply matches any *valid* **Stats** object.

Bounded Wildcards

Wildcard arguments can be bounded in much the same way that a type parameter can be bounded. A bounded wildcard is especially important when you are creating a generic type that will operate on a class hierarchy. To understand why, let's work through an example. Consider the following hierarchy of classes that encapsulate coordinates:

```
// Two-dimensional coordinates.
class TwoD {
   int x, y;
   TwoD(int a, int b) {
      x = a;
      y = b;
   }
}
```

```
// Three-dimensional coordinates.
class ThreeD extends TwoD {
 int z;
 ThreeD(int a, int b, int c) {
   super(a, b);
   Z = C;
 }
}
// Four-dimensional coordinates.
class FourD extends ThreeD {
 int t;
 FourD(int a, int b, int c, int d) {
   super(a, b, c);
   t = d;
 }
}
```

At the top of the hierarchy is **TwoD**, which encapsulates a two-dimensional, XY coordinate. **TwoD** is inherited by **ThreeD**, which adds a third dimension, creating an XYZ coordinate. **ThreeD** is inherited by **FourD**, which adds a fourth dimension (time), yielding a four-dimensional coordinate.

Shown next is a generic class called Coords, which stores an array of coordinates:

```
// This class holds an array of coordinate objects.
class Coords<T extends TwoD> {
  T[] coords;
  Coords(T[] o) { coords = o; }
}
```

Notice that **Coords** specifies a type parameter bounded by **TwoD**. This means that any array stored in a **Coords** object will contain objects of type **TwoD** or one of its subclasses.

Now, assume that you want to write a method that displays the X and Y coordinates for each element in the **coords** array of a **Coords** object. Because all types of **Coords** objects have at least two coordinates (X and Y), this is easy to do using a wildcard, as shown here:

Because **Coords** is a bounded generic type that specifies **TwoD** as an upper bound, all objects that can be used to create a **Coords** object will be arrays of type **TwoD**, or of classes derived from **TwoD**. Thus, **showXY()** can display the contents of any **Coords** object.

However, what if you want to create a method that displays the X, Y, and Z coordinates of a **ThreeD** or **FourD** object? The trouble is that not all **Coords** objects will have three coordinates, because a **Coords<TwoD>** object will only have X and Y. Therefore, how do you write a method that displays the X, Y, and Z coordinates for **Coords<ThreeD>** and **Coords<FourD>** objects, while preventing that method from being used with **Coords<TwoD>** objects? The answer is the *bounded wildcard argument*.

A bounded wildcard specifies either an upper bound or a lower bound for the type argument. This enables you to restrict the types of objects upon which a method will operate. The most common bounded wildcard is the upper bound, which is created using an **extends** clause in much the same way it is used to create a bounded type.

Using a bounded wildcard, it is easy to create a method that displays the X, Y, and Z coordinates of a **Coords** object, if that object actually has those three coordinates. For example, the following **showXYZ()** method shows the X, Y, and Z coordinates of the elements stored in a **Coords** object, if those elements are actually of type **ThreeD** (or are derived from **ThreeD**):

Notice that an **extends** clause has been added to the wildcard in the declaration of parameter **c**. It states that the **?** can match any type as long as it is **ThreeD**, or a class derived from **ThreeD**. Thus, the **extends** clause establishes an upper bound that the **?** can match. Because of this bound, **showXYZ()** can be called with references to objects of type **Coords<ThreeD**> or **Coords<FourD**>, but not with a reference of type **Coords<TwoD**>. Attempting to call **showXZY()** with a **Coords<TwoD**> reference results in a compile-time error, thus ensuring type safety.

Here is an entire program that demonstrates the actions of a bounded wildcard argument:

// Bounded Wildcard arguments.

```
// Two-dimensional coordinates.
class TwoD {
    int x, y;
    TwoD(int a, int b) {
        x = a;
        y = b;
    }
}
// Three-dimensional coordinates.
class ThreeD extends TwoD {
    int z;
    ThreeD(int a, int b, int c) {
```

```
super(a, b);
    Z = C;
  }
}
// Four-dimensional coordinates.
class FourD extends ThreeD {
  int t;
  FourD(int a, int b, int c, int d) {
   super(a, b, c);
    t = d;
  }
}
// This class holds an array of coordinate objects.
class Coords<T extends TwoD> {
  T[] coords;
  Coords(T[] o) \{ coords = o; \}
}
// Demonstrate a bounded wildcard.
class BoundedWildcard {
  static void showXY(Coords<?> c) {
    System.out.println("X Y Coordinates:");
    for(int i=0; i < c.coords.length; i++)</pre>
      System.out.println(c.coords[i].x + " " +
                          c.coords[i].y);
    System.out.println();
  }
  static void showXYZ(Coords<? extends ThreeD> c) {
    System.out.println("X Y Z Coordinates:");
    for(int i=0; i < c.coords.length; i++)</pre>
      System.out.println(c.coords[i].x + " " +
                          c.coords[i].y + " " +
                          c.coords[i].z);
    System.out.println();
  }
  static void showAll(Coords<? extends FourD> c) {
    System.out.println("X Y Z T Coordinates:");
    for(int i=0; i < c.coords.length; i++)</pre>
      System.out.println(c.coords[i].x + " " +
                          c.coords[i].y + " " +
                          c.coords[i].z + " " +
                          c.coords[i].t);
    System.out.println();
  }
  public static void main(String args[]) {
    TwoD td[] = \{
```

```
new TwoD(0, 0),
     new TwoD(7, 9),
     new TwoD(18, 4),
     new TwoD(-1, -23)
    };
   Coords<TwoD> tdlocs = new Coords<TwoD>(td);
   System.out.println("Contents of tdlocs.");
    showXY(tdlocs); // OK, is a TwoD
// showXYZ(tdlocs); // Error, not a ThreeD
// showAll(tdlocs); // Error, not a FourD
    // Now, create some FourD objects.
   FourD fd[] = {
     new FourD(1, 2, 3, 4),
     new FourD(6, 8, 14, 8),
     new FourD(22, 9, 4, 9),
     new FourD(3, -2, -23, 17)
    };
   Coords<FourD> fdlocs = new Coords<FourD>(fd);
   System.out.println("Contents of fdlocs.");
    // These are all OK.
    showXY(fdlocs);
   showXYZ(fdlocs);
    showAll(fdlocs);
 }
}
```

The output from the program is shown here:

```
Contents of tdlocs.
X Y Coordinates:
0 0
79
18 4
-1 -23
Contents of fdlocs.
X Y Coordinates:
1 2
68
22 9
3 -2
X Y Z Coordinates:
123
6 8 14
22 9 4
3 - 2 - 23
```

```
X Y Z T Coordinates:
1 2 3 4
6 8 14 8
22 9 4 9
3 -2 -23 17
```

Notice these commented-out lines:

```
// showXYZ(tdlocs); // Error, not a ThreeD
// showAll(tdlocs); // Error, not a FourD
```

Because **tdlocs** is a **Coords(TwoD)** object, it cannot be used to call **showXYZ()** or **showAll()** because bounded wildcard arguments in their declarations prevent it. To prove this to yourself, try removing the comment symbols, and then attempt to compile the program. You will receive compilation errors because of the type mismatches.

In general, to establish an upper bound for a wildcard, use the following type of wildcard expression:

<? extends superclass>

where *superclass* is the name of the class that serves as the upper bound. Remember, this is an inclusive clause because the class forming the upper bound (that is, specified by *superclass*) is also within bounds.

You can also specify a lower bound for a wildcard by adding a **super** clause to a wildcard declaration. Here is its general form:

<? super subclass>

In this case, only classes that are superclasses of *subclass* are acceptable arguments. This is an exclusive clause, because it will not match the class specified by *subclass*.

Creating a Generic Method

As the preceding examples have shown, methods inside a generic class can make use of a class' type parameter and are, therefore, automatically generic relative to the type parameter. However, it is possible to declare a generic method that uses one or more type parameters of its own. Furthermore, it is possible to create a generic method that is enclosed within a non-generic class.

Let's begin with an example. The following program declares a non-generic class called **GenMethDemo** and a static generic method within that class called **isIn()**. The **isIn()** method determines if an object is a member of an array. It can be used with any type of object and array as long as the array contains objects that are compatible with the type of the object being sought.

```
// Demonstrate a simple generic method.
class GenMethDemo {
   // Determine if an object is in an array.
   static <T, V extends T> boolean isIn(T x, V[] y) {
```

```
for(int i=0; i < y.length; i++)</pre>
      if(x.equals(y[i])) return true;
   return false;
 }
 public static void main(String args[]) {
    // Use isIn() on Integers.
    Integer nums[] = \{1, 2, 3, 4, 5\};
    if(isIn(2, nums))
      System.out.println("2 is in nums");
    if(!isIn(7, nums))
      System.out.println("7 is not in nums");
   System.out.println();
    // Use isIn() on Strings.
    String strs[] = { "one", "two", "three",
                      "four", "five" };
    if(isIn("two", strs))
     System.out.println("two is in strs");
   if(!isIn("seven", strs))
     System.out.println("seven is not in strs");
   // Oops! Won't compile! Types must be compatible.
11
     if(isIn("two", nums))
       System.out.println("two is in strs");
11
}
}
```

The output from the program is shown here:

2 is in nums 7 is not in nums two is in strs seven is not in strs

Let's examine isIn() closely. First, notice how it is declared by this line:

```
static <T, V extends T> boolean isIn(T x, V[] y) {
```

The type parameters are declared *before* the return type of the method. Second, notice that the type **V** is upper-bounded by **T**. Thus, **V** must either be the same as type **T**, or a subclass of **T**. This relationship enforces that **isIn()** can be called only with arguments that are compatible with each other. Also notice that **isIn()** is static, enabling it to be called independently of any object. Understand, though, that generic methods can be either static or non-static. There is no restriction in this regard.

Now, notice how isIn() is called within main() by use of the normal call syntax, without the need to specify type arguments. This is because the types of the arguments are automatically discerned, and the types of T and V are adjusted accordingly. For example, in the first call:

```
if(isIn(2, nums))
```

the type of the first argument is **Integer** (due to autoboxing), which causes **Integer** to be substituted for **T**. The base type of the second argument is also **Integer**, which makes **Integer** a substitute for **V**, too.

In the second call, **String** types are used, and the types of **T** and **V** are replaced by **String**. Now, notice the commented-out code, shown here:

```
// if(isIn("two", nums))
// System.out.println("two is in strs");
```

If you remove the comments and then try to compile the program, you will receive an error. The reason is that the type parameter **V** is bounded by **T** in the **extends** clause in **V**'s declaration. This means that **V** must be either type **T**, or a subclass of **T**. In this case, the first argument is of type **String**, making **T** into **String**, but the second argument is of type **Integer**, which is not a subclass of **String**. This causes a compile-time type-mismatch error. This ability to enforce type safety is one of the most important advantages of generic methods.

The syntax used to create isIn() can be generalized. Here is the syntax for a generic method:

```
<type-param-list> ret-type meth-name(param-list) { / / ...
```

In all cases, *type-param-list* is a comma-separated list of type parameters. Notice that for a generic method, the type parameter list precedes the return type.

Generic Constructors

It is also possible for constructors to be generic, even if their class is not. For example, consider the following short program:

```
// Use a generic constructor.
class GenCons {
    private double val;
    <T extends Number> GenCons(T arg) {
       val = arg.doubleValue();
    }
    void showval() {
       System.out.println("val: " + val);
    }
}
class GenConsDemo {
    public static void main(String args[]) {
       GenCons test = new GenCons(100);
       GenCons test2 = new GenCons(123.5F);
```

```
test.showval();
test2.showval();
}
}
```

The output is shown here:

val: 100.0 val: 123.5

Because **GenCons()** specifies a parameter of a generic type, which must be a subclass of **Number**, **GenCons()** can be called with any numeric type, including **Integer**, **Float**, or **Double**. Therefore, even though **GenCons** is not a generic class, its constructor is generic.

Generic Interfaces

In addition to generic classes and methods, you can also have generic interfaces. Generic interfaces are specified just like generic classes. Here is an example. It creates an interface called **MinMax** that declares the methods **min()** and **max()**, which are expected to return the minimum and maximum value of some set of objects.

```
// A generic interface example.
// A Min/Max interface.
interface MinMax<T extends Comparable<T>> {
  T min();
  T max();
}
// Now, implement MinMax
class MyClass<T extends Comparable<T>> implements MinMax<T> {
  T[] vals;
  MyClass(T[] o) \{ vals = o; \}
  // Return the minimum value in vals.
  public T min() {
    T v = vals[0];
    for(int i=1; i < vals.length; i++)</pre>
      if(vals[i].compareTo(v) < 0) v = vals[i];</pre>
    return v;
  }
  // Return the maximum value in vals.
  public T max() {
    T v = vals[0];
    for(int i=1; i < vals.length; i++)</pre>
      if(vals[i].compareTo(v) > 0) v = vals[i];
```

```
return v;
}

Class GenIFDemo {
    public static void main(String args[]) {
        Integer inums[] = {3, 6, 2, 8, 6 };
        Character chs[] = {'b', 'r', 'p', 'w' };

        MyClass<Integer> iob = new MyClass<Integer>(inums);
        MyClass<Character> cob = new MyClass<Character>(chs);

        System.out.println("Max value in inums: " + iob.max());
        System.out.println("Min value in chs: " + cob.max());
        System.out.println("Min value in chs: " + cob.max());
        System.out.println("Min value in chs: " + cob.max());
    }
}
```

The output is shown here:

```
Max value in inums: 8
Min value in inums: 2
Max value in chs: w
Min value in chs: b
```

Although most aspects of this program should be easy to understand, a couple of key points need to be made. First, notice that **MinMax** is declared like this:

interface MinMax<T extends Comparable<T>> {

In general, a generic interface is declared in the same way as is a generic class. In this case, the type parameter is **T**, and its upper bound is **Comparable**, which is an interface defined by **java.lang**. A class that implements **Comparable** defines objects that can be ordered. Thus, requiring an upper bound of **Comparable** ensures that **MinMax** can be used only with objects that are capable of being compared. (See Chapter 16 for more information on **Comparable**.) Notice that **Comparable** is also generic. (It was retrofitted for generics by JDK 5.) It takes a type parameter that specifies the type of the objects being compared.

Next, **MinMax** is implemented by **MyClass**. Notice the declaration of **MyClass**, shown here:

```
class MyClass<T extends Comparable<T>> implements MinMax<T> {
```

Pay special attention to the way that the type parameter **T** is declared by **MyClass** and then passed to **MinMax**. Because **MinMax** requires a type that implements **Comparable**, the implementing class (**MyClass** in this case) must specify the same bound. Furthermore, once this bound has been established, there is no need to specify it again in the **implements** clause. In fact, it would be wrong to do so. For example, this line is incorrect and won't compile:

```
// This is wrong!
class MyClass<T extends Comparable<T>>
    implements MinMax<T extends Comparable<T>> {
```

Once the type parameter has been established, it is simply passed to the interface without further modification.

In general, if a class implements a generic interface, then that class must also be generic, at least to the extent that it takes a type parameter that is passed to the interface. For example, the following attempt to declare **MyClass** is in error:

```
class MyClass implements MinMax<T> { // Wrong!
```

Because **MyClass** does not declare a type parameter, there is no way to pass one to **MinMax**. In this case, the identifier **T** is simply unknown, and the compiler reports an error. Of course, if a class implements a *specific type* of generic interface, such as shown here:

class MyClass implements MinMax<Integer> { // OK

then the implementing class does not need to be generic.

The generic interface offers two benefits. First, it can be implemented for different types of data. Second, it allows you to put constraints (that is, bounds) on the types of data for which the interface can be implemented. In the **MinMax** example, only types that implement the **Comparable** interface can be passed to **T**.

Here is the generalized syntax for a generic interface:

```
interface interface-name<type-param-list> { / / ...
```

Here, *type-param-list* is a comma-separated list of type parameters. When a generic interface is implemented, you must specify the type arguments, as shown here:

```
class class-name<type-param-list>
    implements interface-name<type-arg-list> {
```

Raw Types and Legacy Code

Because support for generics is a recent addition to Java, it was necessary to provide some transition path from old, pre-generics code. At the time of this writing, there are still millions and millions of lines of pre-generics legacy code that must remain both functional and compatible with generics. Pre-generics code must be able to work with generics, and generic code must be able to work with pre-generic code.

To handle the transition to generics, Java allows a generic class to be used without any type arguments. This creates a *raw type* for the class. This raw type is compatible with legacy code, which has no knowledge of generics. The main drawback to using the raw type is that the type safety of generics is lost.

Here is an example that shows a raw type in action:

```
// Demonstrate a raw type.
class Gen<T> {
```

```
T ob; // declare an object of type T
  // Pass the constructor a reference to
  // an object of type T.
  Gen(T o) {
   ob = o;
  }
  // Return ob.
  T getob() {
   return ob;
  }
}
// Demonstrate raw type.
class RawDemo {
  public static void main(String args[]) {
    // Create a Gen object for Integers.
    Gen<Integer> iOb = new Gen<Integer>(88);
    // Create a Gen object for Strings.
    Gen<String> strOb = new Gen<String>("Generics Test");
    // Create a raw-type Gen object and give it
    // a Double value.
    Gen raw = new Gen(new Double(98.6));
    // Cast here is necessary because type is unknown.
    double d = (Double) raw.getob();
    System.out.println("value: " + d);
    // The use of a raw type can lead to run-time
    // exceptions. Here are some examples.
    // The following cast causes a run-time error!
11
   int i = (Integer) raw.getob(); // run-time error
    // This assignment overrides type safety.
   strOb = raw; // OK, but potentially wrong
11
    String str = strOb.getob(); // run-time error
    // This assignment also overrides type safety.
    raw = iOb; // OK, but potentially wrong
    d = (Double) raw.getob(); // run-time error
11
 }
}
```

This program contains several interesting things. First, a raw type of the generic **Gen** class is created by the following declaration:

Gen raw = new Gen(new Double(98.6));

Notice that no type arguments are specified. In essence, this creates a **Gen** object whose type **T** is replaced by **Object**.

A raw type is not type safe. Thus, a variable of a raw type can be assigned a reference to any type of **Gen** object. The reverse is also allowed; a variable of a specific **Gen** type can be assigned a reference to a raw **Gen** object. However, both operations are potentially unsafe because the type checking mechanism of generics is circumvented.

This lack of type safety is illustrated by the commented-out lines at the end of the program. Let's examine each case. First, consider the following situation:

// int i = (Integer) raw.getob(); // run-time error

In this statement, the value of **ob** inside **raw** is obtained, and this value is cast to **Integer**. The trouble is that **raw** contains a **Double** value, not an integer value. However, this cannot be detected at compile time because the type of **raw** is unknown. Thus, this statement fails at run time.

The next sequence assigns to a **strOb** (a reference of type **Gen<String>**) a reference to a raw **Gen** object:

```
strOb = raw; // OK, but potentially wrong
// String str = strOb.getob(); // run-time error
```

The assignment, itself, is syntactically correct, but questionable. Because **strOb** is of type **Gen<String>**, it is assumed to contain a **String**. However, after the assignment, the object referred to by **strOb** contains a **Double**. Thus, at run time, when an attempt is made to assign the contents of **strOb** to **str**, a run-time error results because **strOb** now contains a **Double**. Thus, the assignment of a raw reference to a generic reference bypasses the type-safety mechanism.

The following sequence inverts the preceding case:

```
raw = iOb; // OK, but potentially wrong
// d = (Double) raw.getob(); // run-time error
```

Here, a generic reference is assigned to a raw reference variable. Although this is syntactically correct, it can lead to problems, as illustrated by the second line. In this case, **raw** now refers to an object that contains an **Integer** object, but the cast assumes that it contains a **Double**. This error cannot be prevented at compile time. Rather, it causes a run-time error.

Because of the potential for danger inherent in raw types, **javac** displays *unchecked warnings* when a raw type is used in a way that might jeopardize type safety. In the preceding program, these lines generate unchecked warnings:

```
Gen raw = new Gen(new Double(98.6));
strOb = raw; // OK, but potentially wrong
```

In the first line, it is the call to the **Gen** constructor without a type argument that causes the warning. In the second line, it is the assignment of a raw reference to a generic variable that generates the warning.

At first, you might think that this line should also generate an unchecked warning, but it does not:

raw = iOb; // OK, but potentially wrong

No compiler warning is issued because the assignment does not cause any *further* loss of type safety than had already occurred when **raw** was created.

One final point: You should limit the use of raw types to those cases in which you must mix legacy code with newer, generic code. Raw types are simply a transitional feature and not something that should be used for new code.

Generic Class Hierarchies

Generic classes can be part of a class hierarchy in just the same way as a non-generic class. Thus, a generic class can act as a superclass or be a subclass. The key difference between generic and non-generic hierarchies is that in a generic hierarchy, any type arguments needed by a generic superclass must be passed up the hierarchy by all subclasses. This is similar to the way that constructor arguments must be passed up a hierarchy.

Using a Generic Superclass

Here is a simple example of a hierarchy that uses a generic superclass:

```
// A simple generic class hierarchy.
class Gen<T> {
  T ob;
  Gen(T o) {
    ob = o;
  }
  // Return ob.
  T qetob() {
    return ob;
}
// A subclass of Gen.
class Gen2<T> extends Gen<T> {
  Gen2(T o) {
    super(o);
  }
}
```

In this hierarchy, **Gen2** extends the generic class **Gen**. Notice how **Gen2** is declared by the following line:

```
class Gen2<T> extends Gen<T> {
```

The type parameter **T** is specified by **Gen2** and is also passed to **Gen** in the **extends** clause. This means that whatever type is passed to **Gen2** will also be passed to **Gen**. For example, this declaration,

```
Gen2<Integer> num = new Gen2<Integer>(100);
```

passes **Integer** as the type parameter to **Gen**. Thus, the **ob** inside the **Gen** portion of **Gen2** will be of type **Integer**.

Notice also that **Gen2** does not use the type parameter **T** except to pass it to the **Gen** superclass. Thus, even if a subclass of a generic superclass would otherwise not need to be generic, it still must specify the type parameter(s) required by its generic superclass.

Of course, a subclass is free to add its own type parameters, if needed. For example, here is a variation on the preceding hierarchy in which **Gen2** adds a type parameter of its own:

```
// A subclass can add its own type parameters.
class Gen<T> {
  T ob; // declare an object of type T
  // Pass the constructor a reference to
  // an object of type T.
  Gen(T o) {
   ob = o;
  }
  // Return ob.
  T getob() {
   return ob;
  }
}
// A subclass of Gen that defines a second
// type parameter, called V.
class Gen2<T, V> extends Gen<T> {
  V ob2;
  Gen2(T o, V o2) {
    super(o);
    ob2 = o2;
  }
  V getob2() {
   return ob2;
  }
}
// Create an object of type Gen2.
class HierDemo {
  public static void main(String args[]) {
```

```
// Create a Gen2 object for String and Integer.
Gen2<String, Integer> x =
    new Gen2<String, Integer>("Value is: ", 99);
System.out.print(x.getob());
System.out.println(x.getob2());
}
```

Notice the declaration of this version of Gen2, which is shown here:

```
class Gen2<T, V> extends Gen<T> {
```

Here, **T** is the type passed to **Gen**, and **V** is the type that is specific to **Gen2**. **V** is used to declare an object called **ob2**, and as a return type for the method **getob2()**. In **main()**, a **Gen2** object is created in which type parameter **T** is **String**, and type parameter **V** is **Integer**. The program displays the following, expected, result:

Value is: 99

A Generic Subclass

It is perfectly acceptable for a non-generic class to be the superclass of a generic subclass. For example, consider this program:

```
// A non-generic class can be the superclass
// of a generic subclass.
// A non-generic class.
class NonGen {
  int num;
  NonGen(int i) {
   num = i;
  }
  int getnum() {
   return num;
  }
}
// A generic subclass.
class Gen<T> extends NonGen {
  T ob; // declare an object of type T
  // Pass the constructor a reference to
  // an object of type T.
  Gen(T o, int i) {
   super(i);
   ob = o;
  }
```

```
// Return ob.
T getob() {
  return ob;
}
}
// Create a Gen object.
class HierDemo2 {
  public static void main(String args[]) {
    // Create a Gen object for String.
    Gen<String> w = new Gen<String>("Hello", 47);
    System.out.print(w.getob() + " ");
    System.out.println(w.getnum());
  }
}
```

The output from the program is shown here:

Hello 47

In the program, notice how Gen inherits NonGen in the following declaration:

class Gen<T> extends NonGen {

Because **NonGen** is not generic, no type argument is specified. Thus, even though **Gen** declares the type parameter **T**, it is not needed by (nor can it be used by) **NonGen**. Thus, **NonGen** is inherited by **Gen** in the normal way. No special conditions apply.

Run-Time Type Comparisons Within a Generic Hierarchy

Recall the run-time type information operator **instanceof** that was described in Chapter 13. As explained, **instanceof** determines if an object is an instance of a class. It returns true if an object is of the specified type or can be cast to the specified type. The **instanceof** operator can be applied to objects of generic classes. The following class demonstrates some of the type compatibility implications of a generic hierarchy:

```
// Use the instanceof operator with a generic class hierarchy.
class Gen<T> {
  T ob;
  Gen(T o) {
    ob = 0;
  }
  // Return ob.
  T getob() {
    return ob;
  }
}
```

```
// A subclass of Gen.
class Gen2<T> extends Gen<T> {
 Gen2(T o) {
   super(o);
  }
}
// Demonstrate run-time type ID implications of generic
// class hierarchy.
class HierDemo3 {
  public static void main(String args[]) {
    // Create a Gen object for Integers.
    Gen<Integer> iOb = new Gen<Integer>(88);
    // Create a Gen2 object for Integers.
    Gen2<Integer> iOb2 = new Gen2<Integer>(99);
    // Create a Gen2 object for Strings.
    Gen2<String> strOb2 = new Gen2<String>("Generics Test");
    // See if iOb2 is some form of Gen2.
    if(iOb2 instanceof Gen2<?>)
      System.out.println("iOb2 is instance of Gen2");
    // See if iOb2 is some form of Gen.
    if(iOb2 instanceof Gen<?>)
      System.out.println("iOb2 is instance of Gen");
    System.out.println();
    // See if strOb2 is a Gen2.
    if(strOb2 instanceof Gen2<?>)
      System.out.println("strOb2 is instance of Gen2");
    // See if strOb2 is a Gen.
    if(strOb2 instanceof Gen<?>)
      System.out.println("strOb2 is instance of Gen");
    System.out.println();
    // See if iOb is an instance of Gen2, which it is not.
    if(iOb instanceof Gen2<?>)
      System.out.println("iOb is instance of Gen2");
    // See if iOb is an instance of Gen, which it is.
    if(iOb instanceof Gen<?>)
      System.out.println("iOb is instance of Gen");
    // The following can't be compiled because
    // generic type info does not exist at run time.
11
     if(iOb2 instanceof Gen2<Integer>)
11
        System.out.println("iOb2 is instance of Gen2<Integer>");
 }
}
```

The output from the program is shown here:

iOb2 is instance of Gen2 iOb2 is instance of Gen strOb2 is instance of Gen2 strOb2 is instance of Gen iOb is instance of Gen

In this program, **Gen2** is a subclass of **Gen**, which is generic on type parameter **T**. In **main()**, three objects are created. The first is **iOb**, which is an object of type **Gen<Integer>**. The second is **iOb2**, which is an instance of **Gen2<Integer>**. Finally, **strOb2** is an object of type **Gen2<String>**.

Then, the program performs these instanceof tests on the type of iOb2:

```
// See if iOb2 is some form of Gen2.
if(iOb2 instanceof Gen2<?>)
  System.out.println("iOb2 is instance of Gen2");
// See if iOb2 is some form of Gen.
if(iOb2 instanceof Gen<?>)
  System.out.println("iOb2 is instance of Gen");
```

As the output shows, both succeed. In the first test, **iOb2** is checked against **Gen2**<?>. This test succeeds because it simply confirms that **iOb2** is an object of some type of **Gen2** object. The use of the wildcard enables **instanceof** to determine if **iOb2** is an object of any type of **Gen2**. Next, **iOb2** is tested against **Gen**<?>, the superclass type. This is also true because **iOb2** is some form of **Gen**, the superclass. The next few lines in **main()** show the same sequence (and same results) for **strOb2**.

Next, iOb, which is an instance of Gen<Integer> (the superclass), is tested by these lines:

```
// See if iOb is an instance of Gen2, which it is not.
if(iOb instanceof Gen2<?>)
System.out.println("iOb is instance of Gen2");
// See if iOb is an instance of Gen, which it is.
if(iOb instanceof Gen<?>)
System.out.println("iOb is instance of Gen");
```

The first **if** fails because **iOb** is not some type of **Gen2** object. The second test succeeds because **iOb** is some type of **Gen** object.

Now, look closely at these commented-out lines:

```
// The following can't be compiled because
// generic type info does not exist at run time.
// if(iOb2 instanceof Gen2<Integer>)
// System.out.println("iOb2 is instance of Gen2<Integer>");
```

As the comments indicate, these lines can't be compiled because they attempt to compare **iOb2** with a specific type of **Gen2**, in this case, **Gen2<Integer>**. Remember, there is no generic

type information available at run time. Therefore, there is no way for **instanceof** to know if **iOb2** is an instance of **Gen2<Integer>** or not.

Casting

You can cast one instance of a generic class into another only if the two are otherwise compatible and their type arguments are the same. For example, assuming the foregoing program, this cast is legal:

```
(Gen<Integer>) iOb2 // legal
```

because iOb2 is an instance of Gen<Integer>. But, this cast:

(Gen<Long>) iOb2 // illegal

is not legal because iOb2 is not an instance of Gen<Long>.

Overriding Methods in a Generic Class

A method in a generic class can be overridden just like any other method. For example, consider this program in which the method **getob()** is overridden:

```
// Overriding a generic method in a generic class.
class Gen<T> {
  T ob; // declare an object of type T
  // Pass the constructor a reference to
  // an object of type T.
  Gen(T o) {
   ob = o;
  }
  // Return ob.
  T getob() {
   System.out.print("Gen's getob(): " );
    return ob;
  }
}
// A subclass of Gen that overrides getob().
class Gen2<T> extends Gen<T> {
  Gen2(T o) {
   super(o);
  }
  // Override getob().
  T getob() {
   System.out.print("Gen2's getob(): ");
    return ob;
  }
}
```

```
// Demonstrate generic method override.
class OverrideDemo {
   public static void main(String args[]) {
      // Create a Gen object for Integers.
      Gen<Integer> iOb = new Gen<Integer>(88);
      // Create a Gen2 object for Integers.
      Gen2<Integer> iOb2 = new Gen2<Integer>(99);
      // Create a Gen2 object for Strings.
      Gen2<String> strOb2 = new Gen2<String>("Generics Test");
      System.out.println(iOb.getob());
      System.out.println(iOb2.getob());
      System.out.println(strOb2.getob());
    }
}
```

The output is shown here:

Gen's getob(): 88
Gen2's getob(): 99
Gen2's getob(): Generics Test

As the output confirms, the overridden version of **getob()** is called for objects of type **Gen2**, but the superclass version is called for objects of type **Gen**.

Erasure

Usually, it is not necessary to know the details about how the Java compiler transforms your source code into object code. However, in the case of generics, some general understanding of the process is important because it explains why the generic features work as they do—and why their behavior is sometimes a bit surprising. For this reason, a brief discussion of how generics are implemented in Java is in order.

An important constraint that governed the way that generics were added to Java was the need for compatibility with previous versions of Java. Simply put, generic code had to be compatible with preexisting, non-generic code. Thus, any changes to the syntax of the Java language, or to the JVM, had to avoid breaking older code. The way Java implements generics while satisfying this constraint is through the use of *erasure*.

In general, here is how erasure works. When your Java code is compiled, all generic type information is removed (erased). This means replacing type parameters with their bound type, which is **Object** if no explicit bound is specified, and then applying the appropriate casts (as determined by the type arguments) to maintain type compatibility with the types specified by the type arguments. The compiler also enforces this type compatibility. This approach to generics means that no type parameters exist at run time. They are simply a source-code mechanism.