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Enumerations, Autoboxing,

and Annotations (Metadata)

This chapter examines three recent additions to the Java language: enumerations,
autoboxing, and annotations (also referred to as metadata). Each expands the power
of the language by offering a streamlined approach to handling common programming

tasks. This chapter also discusses Java’s type wrappers and introduces reflection.

Enumerations
Versions prior to JDK 5 lacked one feature that many programmers felt was needed:
enumerations. In its simplest form, an enumeration is a list of named constants. Although
Java offered other features that provide somewhat similar functionality, such as final
variables, many programmers still missed the conceptual purity of enumerations—especially
because enumerations are supported by most other commonly used languages. Beginning
with JDK 5, enumerations were added to the Java language, and they are now available to
the Java programmer.

In their simplest form, Java enumerations appear similar to enumerations in other
languages. However, this similarity is only skin deep. In languages such as C++, enumerations
are simply lists of named integer constants. In Java, an enumeration defines a class type. By
making enumerations into classes, the concept of the enumeration is greatly expanded. For
example, in Java, an enumeration can have constructors, methods, and instance variables.
Therefore, although enumerations were several years in the making, Java’s rich
implementation made them well worth the wait.

Enumeration Fundamentals
An enumeration is created using the enum keyword. For example, here is a simple
enumeration that lists various apple varieties:

// An enumeration of apple varieties.
enum Apple {
Jonathan, GoldenDel, RedDel, Winesap, Cortland

}
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The identifiers Jonathan, GoldenDel, and so on, are called enumeration constants. Each is
implicitly declared as a public, static final member of Apple. Furthermore, their type is the
type of the enumeration in which they are declared, which is Apple in this case. Thus,
in the language of Java, these constants are called self-typed, in which “self” refers to the
enclosing enumeration.

Once you have defined an enumeration, you can create a variable of that type. However,
even though enumerations define a class type, you do not instantiate an enum using new.
Instead, you declare and use an enumeration variable in much the same way as you do one
of the primitive types. For example, this declares ap as a variable of enumeration type Apple:

Apple ap;

Because ap is of type Apple, the only values that it can be assigned (or can contain) are those
defined by the enumeration. For example, this assigns ap the value RedDel:

ap = Apple.RedDel;

Notice that the symbol RedDel is preceded by Apple.
Two enumeration constants can be compared for equality by using the = = relational

operator. For example, this statement compares the value in ap with the GoldenDel constant:

if(ap == Apple.GoldenDel) // ...

An enumeration value can also be used to control a switch statement. Of course, all
of the case statements must use constants from the same enum as that used by the switch
expression. For example, this switch is perfectly valid:

// Use an enum to control a switch statement.
switch(ap) {
case Jonathan:
// ...

case Winesap:
// ...

Notice that in the case statements, the names of the enumeration constants are used without
being qualified by their enumeration type name. That is, Winesap, not Apple.Winesap, is used.
This is because the type of the enumeration in the switch expression has already implicitly
specified the enum type of the case constants. There is no need to qualify the constants in
the case statements with their enum type name. In fact, attempting to do so will cause a
compilation error.

When an enumeration constant is displayed, such as in a println( ) statement, its name
is output. For example, given this statement:

System.out.println(Apple.Winesap);

the name Winesap is displayed.
The following program puts together all of the pieces and demonstrates the Apple

enumeration:
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// An enumeration of apple varieties.
enum Apple {
Jonathan, GoldenDel, RedDel, Winesap, Cortland

}

class EnumDemo {
public static void main(String args[])
{
Apple ap;

ap = Apple.RedDel;

// Output an enum value.
System.out.println("Value of ap: " + ap);
System.out.println();

ap = Apple.GoldenDel;

// Compare two enum values.
if(ap == Apple.GoldenDel)
System.out.println("ap contains GoldenDel.\n");

// Use an enum to control a switch statement.
switch(ap) {
case Jonathan:
System.out.println("Jonathan is red.");
break;

case GoldenDel:
System.out.println("Golden Delicious is yellow.");
break;

case RedDel:
System.out.println("Red Delicious is red.");
break;

case Winesap:
System.out.println("Winesap is red.");
break;

case Cortland:
System.out.println("Cortland is red.");
break;

}
}

}

The output from the program is shown here:

Value of ap: RedDel

ap contains GoldenDel.

Golden Delicious is yellow.
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The values( ) and valueOf( ) Methods
All enumerations automatically contain two predefined methods: values( ) and valueOf( ).
Their general forms are shown here:

public static enum-type[ ] values( )
public static enum-type valueOf(String str)

The values( ) method returns an array that contains a list of the enumeration constants. The
valueOf( ) method returns the enumeration constant whose value corresponds to the string
passed in str. In both cases, enum-type is the type of the enumeration. For example, in the case
of the Apple enumeration shown earlier, the return type of Apple.valueOf(“Winesap”) is
Winesap.

The following program demonstrates the values( ) and valueOf( ) methods:

// Use the built-in enumeration methods.

// An enumeration of apple varieties.
enum Apple {
Jonathan, GoldenDel, RedDel, Winesap, Cortland

}

class EnumDemo2 {
public static void main(String args[])
{
Apple ap;

System.out.println("Here are all Apple constants:");

// use values()
Apple allapples[] = Apple.values();
for(Apple a : allapples)

System.out.println(a);

System.out.println();

// use valueOf()
ap = Apple.valueOf("Winesap");
System.out.println("ap contains " + ap);

}
}

The output from the program is shown here:

Here are all Apple constants:
Jonathan
GoldenDel
RedDel
Winesap
Cortland

ap contains Winesap
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Notice that this program uses a for-each style for loop to cycle through the array of
constants obtained by calling values( ). For the sake of illustration, the variable allapples
was created and assigned a reference to the enumeration array. However, this step is not
necessary because the for could have been written as shown here, eliminating the need for
the allapples variable:

for(Apple a : Apple.values())
System.out.println(a);

Now, notice how the value corresponding to the name Winesap was obtained by calling
valueOf( ).

ap = Apple.valueOf("Winesap");

As explained, valueOf( ) returns the enumeration value associated with the name of the
constant represented as a string.

NOTEOTE C/C++ programmers will notice that Java makes it much easier to translate between the
human-readable form of an enumeration constant and its binary value than do these other
languages. This is a significant advantage to Java’s approach to enumerations.

Java Enumerations Are Class Types
As explained, a Java enumeration is a class type. Although you don’t instantiate an enum
using new, it otherwise has much the same capabilities as other classes. The fact that enum
defines a class gives powers to the Java enumeration that enumerations in other
languages simply do not have. For example, you can give them constructors, add instance
variables and methods, and even implement interfaces.

It is important to understand that each enumeration constant is an object of its enumeration
type. Thus, when you define a constructor for an enum, the constructor is called when each
enumeration constant is created. Also, each enumeration constant has its own copy of any
instance variables defined by the enumeration. For example, consider the following version
of Apple:

// Use an enum constructor, instance variable, and method.
enum Apple {
Jonathan(10), GoldenDel(9), RedDel(12), Winesap(15), Cortland(8);

private int price; // price of each apple

// Constructor
Apple(int p) { price = p; }

int getPrice() { return price; }
}

class EnumDemo3 {
public static void main(String args[])
{
Apple ap;
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// Display price of Winesap.
System.out.println("Winesap costs " +

Apple.Winesap.getPrice() +
" cents.\n");

// Display all apples and prices.
System.out.println("All apple prices:");
for(Apple a : Apple.values())
System.out.println(a + " costs " + a.getPrice() +

" cents.");
}

}

The output is shown here:

Winesap costs 15 cents.

All apple prices:
Jonathan costs 10 cents.
GoldenDel costs 9 cents.
RedDel costs 12 cents.
Winesap costs 15 cents.
Cortland costs 8 cents.

This version of Apple adds three things. The first is the instance variable price, which is
used to hold the price of each variety of apple. The second is the Apple constructor, which
is passed the price of an apple. The third is the method getPrice( ), which returns the value
of price.

When the variable ap is declared in main( ), the constructor for Apple is called once for
each constant that is specified. Notice how the arguments to the constructor are specified,
by putting them inside parentheses after each constant, as shown here:

Jonathan(10), GoldenDel(9), RedDel(12), Winesap(15), Cortland(8);

These values are passed to the p parameter of Apple( ), which then assigns this value to price.
Again, the constructor is called once for each constant.

Because each enumeration constant has its own copy of price, you can obtain the price of
a specified type of apple by calling getPrice( ). For example, in main( ) the price of a Winesap
is obtained by the following call:

Apple.Winesap.getPrice()

The prices of all varieties are obtained by cycling through the enumeration using a for loop.
Because there is a copy of price for each enumeration constant, the value associated with
one constant is separate and distinct from the value associated with another constant. This
is a powerful concept, which is only available when enumerations are implemented as classes,
as Java does.

Although the preceding example contains only one constructor, an enum can offer two
or more overloaded forms, just as can any other class. For example, this version of Apple
provides a default constructor that initializes the price to –1, to indicate that no price data
is available:



// Use an enum constructor.
enum Apple {
Jonathan(10), GoldenDel(9), RedDel, Winesap(15), Cortland(8);

private int price; // price of each apple

// Constructor
Apple(int p) { price = p; }

// Overloaded constructor
Apple() { price = -1; }

int getPrice() { return price; }
}

Notice that in this version, RedDel is not given an argument. This means that the default
constructor is called, and RedDel’s price variable is given the value –1.

Here are two restrictions that apply to enumerations. First, an enumeration can’t inherit
another class. Second, an enum cannot be a superclass. This means that an enum can’t be
extended. Otherwise, enum acts much like any other class type. The key is to remember that
each of the enumeration constants is an object of the class in which it is defined.

Enumerations Inherit Enum
Although you can’t inherit a superclass when declaring an enum, all enumerations
automatically inherit one: java.lang.Enum. This class defines several methods that are
available for use by all enumerations. The Enum class is described in detail in Part II,
but three of its methods warrant a discussion at this time.

You can obtain a value that indicates an enumeration constant’s position in the list of
constants. This is called its ordinal value, and it is retrieved by calling the ordinal( ) method,
shown here:

final int ordinal( )

It returns the ordinal value of the invoking constant. Ordinal values begin at zero. Thus, in
the Apple enumeration, Jonathan has an ordinal value of zero, GoldenDel has an ordinal
value of 1, RedDel has an ordinal value of 2, and so on.

You can compare the ordinal value of two constants of the same enumeration by using
the compareTo( ) method. It has this general form:

final int compareTo(enum-type e)

Here, enum-type is the type of the enumeration, and e is the constant being compared to
the invoking constant. Remember, both the invoking constant and e must be of the same
enumeration. If the invoking constant has an ordinal value less than e’s, then compareTo( )
returns a negative value. If the two ordinal values are the same, then zero is returned. If the
invoking constant has an ordinal value greater than e’s, then a positive value is returned.

You can compare for equality an enumeration constant with any other object by using
equals( ), which overrides the equals( ) method defined by Object. Although equals( ) can
compare an enumeration constant to any other object, those two objects will only be equal if
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they both refer to the same constant, within the same enumeration. Simply having ordinal
values in common will not cause equals( ) to return true if the two constants are from
different enumerations.

Remember, you can compare two enumeration references for equality by using = =.
The following program demonstrates the ordinal( ), compareTo( ), and equals( ) methods:

// Demonstrate ordinal(), compareTo(), and equals().

// An enumeration of apple varieties.
enum Apple {
Jonathan, GoldenDel, RedDel, Winesap, Cortland

}

class EnumDemo4 {
public static void main(String args[])
{
Apple ap, ap2, ap3;

// Obtain all ordinal values using ordinal().
System.out.println("Here are all apple constants" +

" and their ordinal values: ");
for(Apple a : Apple.values())
System.out.println(a + " " + a.ordinal());

ap =  Apple.RedDel;
ap2 = Apple.GoldenDel;
ap3 = Apple.RedDel;

System.out.println();

// Demonstrate compareTo() and equals()
if(ap.compareTo(ap2) < 0)
System.out.println(ap + " comes before " + ap2);

if(ap.compareTo(ap2) > 0)
System.out.println(ap2 + " comes before " + ap);

if(ap.compareTo(ap3) == 0)
System.out.println(ap + " equals " + ap3);

System.out.println();

if(ap.equals(ap2))
System.out.println("Error!");

if(ap.equals(ap3))
System.out.println(ap + " equals " + ap3);

if(ap == ap3)
System.out.println(ap + " == " + ap3);

}
}



The output from the program is shown here:

Here are all apple constants and their ordinal values:
Jonathan 0
GoldenDel 1
RedDel 2
Winesap 3
Cortland 4

GoldenDel comes before RedDel
RedDel equals RedDel

RedDel equals RedDel
RedDel == RedDel

Another Enumeration Example
Before moving on, we will look at a different example that uses an enum. In Chapter 9, an
automated “decision maker” program was created. In that version, variables called NO,
YES, MAYBE, LATER, SOON, and NEVER were declared within an interface and used to
represent the possible answers. While there is nothing technically wrong with that approach,
the enumeration is a better choice. Here is an improved version of that program that uses an
enum called Answers to define the answers. You should compare this version to the original
in Chapter 9.

// An improved version of the "Decision Maker"
// program from Chapter 9. This version uses an
// enum, rather than interface variables, to
// represent the answers.

import java.util.Random;

// An enumeration of the possible answers.
enum Answers {
NO, YES, MAYBE, LATER, SOON, NEVER

}

class Question {
Random rand = new Random();
Answers ask() {
int prob = (int) (100 * rand.nextDouble());

if (prob < 15)
return Answers.MAYBE; // 15%

else if (prob < 30)
return Answers.NO;    // 15%

else if (prob < 60)
return Answers.YES;   // 30%

else if (prob < 75)
return Answers.LATER; // 15%

else if (prob < 98)
return Answers.SOON;  // 13%
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else
return Answers.NEVER; // 2%

}
}

class AskMe {
static void answer(Answers result) {
switch(result) {
case NO:
System.out.println("No");
break;

case YES:
System.out.println("Yes");
break;

case MAYBE:
System.out.println("Maybe");
break;

case LATER:
System.out.println("Later");
break;

case SOON:
System.out.println("Soon");
break;

case NEVER:
System.out.println("Never");
break;

}
}

public static void main(String args[]) {
Question q = new Question();
answer(q.ask());
answer(q.ask());
answer(q.ask());
answer(q.ask());

}
}

Type Wrappers
As you know, Java uses primitive types (also called simple types), such as int or double, to
hold the basic data types supported by the language. Primitive types, rather than objects,
are used for these quantities for the sake of performance. Using objects for these values would
add an unacceptable overhead to even the simplest of calculations. Thus, the primitive types
are not part of the object hierarchy, and they do not inherit Object.

Despite the performance benefit offered by the primitive types, there are times when
you will need an object representation. For example, you can’t pass a primitive type by
reference to a method. Also, many of the standard data structures implemented by Java
operate on objects, which means that you can’t use these data structures to store primitive
types. To handle these (and other) situations, Java provides type wrappers, which are classes
that encapsulate a primitive type within an object. The type wrapper classes are described
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in detail in Part II, but they are introduced here because they relate directly to Java’s
autoboxing feature.

The type wrappers are Double, Float, Long, Integer, Short, Byte, Character, and Boolean.
These classes offer a wide array of methods that allow you to fully integrate the primitive
types into Java’s object hierarchy. Each is briefly examined next.

Character
Character is a wrapper around a char. The constructor for Character is

Character(char ch)

Here, ch specifies the character that will be wrapped by the Character object being created.
To obtain the char value contained in a Character object, call charValue( ), shown here:

char charValue( )

It returns the encapsulated character.

Boolean
Boolean is a wrapper around boolean values. It defines these constructors:

Boolean(boolean boolValue)
Boolean(String boolString)

In the first version, boolValue must be either true or false. In the second version, if boolString
contains the string “true” (in uppercase or lowercase), then the new Boolean object will be
true. Otherwise, it will be false.

To obtain a boolean value from a Boolean object, use booleanValue( ), shown here:

boolean booleanValue( )

It returns the boolean equivalent of the invoking object.

The Numeric Type Wrappers
By far, the most commonly used type wrappers are those that represent numeric values.
These are Byte, Short, Integer, Long, Float, and Double. All of the numeric type wrappers
inherit the abstract class Number. Number declares methods that return the value of an
object in each of the different number formats. These methods are shown here:

byte byteValue( )
double doubleValue( )
float floatValue( )
int intValue( )
long longValue( )
short shortValue( )

For example, doubleValue( ) returns the value of an object as a double, floatValue( )
returns the value as a float, and so on. These methods are implemented by each of the
numeric type wrappers.
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All of the numeric type wrappers define constructors that allow an object to be constructed
from a given value, or a string representation of that value. For example, here are the
constructors defined for Integer:

Integer(int num)
Integer(String str)

If str does not contain a valid numeric value, then a NumberFormatException is thrown.
All of the type wrappers override toString( ). It returns the human-readable form of the

value contained within the wrapper. This allows you to output the value by passing a type
wrapper object to println( ), for example, without having to convert it into its primitive type.

The following program demonstrates how to use a numeric type wrapper to
encapsulate a value and then extract that value.

// Demonstrate a type wrapper.
class Wrap {
public static void main(String args[]) {

Integer iOb = new Integer(100);

int i = iOb.intValue();

System.out.println(i + " " + iOb); // displays 100 100
}

}

This program wraps the integer value 100 inside an Integer object called iOb. The program
then obtains this value by calling intValue( ) and stores the result in i.

The process of encapsulating a value within an object is called boxing. Thus, in the program,
this line boxes the value 100 into an Integer:

Integer iOb = new Integer(100);

The process of extracting a value from a type wrapper is called unboxing. For example, the
program unboxes the value in iOb with this statement:

int i = iOb.intValue();

The same general procedure used by the preceding program to box and unbox values has
been employed since the original version of Java. However, with the release of JDK 5, Java
fundamentally improved on this through the addition of autoboxing, described next.

Autoboxing
Beginning with JDK 5, Java added two important features: autoboxing and auto-unboxing.
Autoboxing is the process by which a primitive type is automatically encapsulated (boxed)
into its equivalent type wrapper whenever an object of that type is needed. There is no need
to explicitly construct an object. Auto-unboxing is the process by which the value of a boxed
object is automatically extracted (unboxed) from a type wrapper when its value is needed.
There is no need to call a method such as intValue( ) or doubleValue( ).
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The addition of autoboxing and auto-unboxing greatly streamlines the coding of several
algorithms, removing the tedium of manually boxing and unboxing values. It also helps
prevent errors. Moreover, it is very important to generics, which operates only on objects.
Finally, autoboxing makes working with the Collections Framework (described in Part II)
much easier.

With autoboxing it is no longer necessary to manually construct an object in order to
wrap a primitive type. You need only assign that value to a type-wrapper reference. Java
automatically constructs the object for you. For example, here is the modern way to construct
an Integer object that has the value 100:

Integer iOb = 100; // autobox an int

Notice that no object is explicitly created through the use of new. Java handles this for you,
automatically.

To unbox an object, simply assign that object reference to a primitive-type variable.
For example, to unbox iOb, you can use this line:

int i = iOb; // auto-unbox

Java handles the details for you.
Here is the preceding program rewritten to use autoboxing/unboxing:

// Demonstrate autoboxing/unboxing.
class AutoBox {
public static void main(String args[]) {

Integer iOb = 100; // autobox an int

int i = iOb; // auto-unbox

System.out.println(i + " " + iOb);  // displays 100 100
}

}

Autoboxing and Methods
In addition to the simple case of assignments, autoboxing automatically occurs whenever
a primitive type must be converted into an object; auto-unboxing takes place whenever an
object must be converted into a primitive type. Thus, autoboxing/unboxing might occur when
an argument is passed to a method, or when a value is returned by a method. For example,
consider this example:

// Autoboxing/unboxing takes place with
// method parameters and return values.

class AutoBox2 {
// Take an Integer parameter and return
// an int value;
static int m(Integer v) {
return v ; // auto-unbox to int

}



public static void main(String args[]) {
// Pass an int to m() and assign the return value
// to an Integer.  Here, the argument 100 is autoboxed
// into an Integer.  The return value is also autoboxed
// into an Integer.
Integer iOb = m(100);

System.out.println(iOb);
}

}

This program displays the following result:

100

In the program, notice that m( ) specifies an Integer parameter and returns an int result.
Inside main( ), m( ) is passed the value 100. Because m( ) is expecting an Integer, this value
is automatically boxed. Then, m( ) returns the int equivalent of its argument. This causes v
to be auto-unboxed. Next, this int value is assigned to iOb in main( ), which causes the int
return value to be autoboxed.

Autoboxing/Unboxing Occurs in Expressions
In general, autoboxing and unboxing take place whenever a conversion into an object or from
an object is required. This applies to expressions. Within an expression, a numeric object is
automatically unboxed. The outcome of the expression is reboxed, if necessary. For example,
consider the following program:

// Autoboxing/unboxing occurs inside expressions.

class AutoBox3 {
public static void main(String args[]) {

Integer iOb, iOb2;
int i;

iOb = 100;
System.out.println("Original value of iOb: " + iOb);

// The following automatically unboxes iOb,
// performs the increment, and then reboxes
// the result back into iOb.
++iOb;
System.out.println("After ++iOb: " + iOb);

// Here, iOb is unboxed, the expression is
// evaluated, and the result is reboxed and
// assigned to iOb2.
iOb2 = iOb + (iOb / 3);
System.out.println("iOb2 after expression: " + iOb2);

// The same expression is evaluated, but the
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// result is not reboxed.
i = iOb + (iOb / 3);
System.out.println("i after expression: " + i);

}
}

The output is shown here:

Original value of iOb: 100
After ++iOb: 101
iOb2 after expression: 134
i after expression: 134

In the program, pay special attention to this line:

++iOb;

This causes the value in iOb to be incremented. It works like this: iOb is unboxed, the
value is incremented, and the result is reboxed.

Auto-unboxing also allows you to mix different types of numeric objects in an expression.
Once the values are unboxed, the standard type promotions and conversions are applied. For
example, the following program is perfectly valid:

class AutoBox4 {
public static void main(String args[]) {

Integer iOb = 100;
Double dOb = 98.6;

dOb = dOb + iOb;
System.out.println("dOb after expression: " + dOb);

}
}

The output is shown here:

dOb after expression: 198.6

As you can see, both the Double object dOb and the Integer object iOb participated
in the addition, and the result was reboxed and stored in dOb.

Because of auto-unboxing, you can use integer numeric objects to control a switch
statement. For example, consider this fragment:

Integer iOb = 2;

switch(iOb) {
case 1: System.out.println("one");
break;

case 2: System.out.println("two");
break;
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default: System.out.println("error");
}

When the switch expression is evaluated, iOb is unboxed and its int value is obtained.
As the examples in the program show, because of autoboxing/unboxing, using numeric

objects in an expression is both intuitive and easy. In the past, such code would have involved
casts and calls to methods such as intValue( ).

Autoboxing/Unboxing Boolean and Character Values
As described earlier, Java also supplies wrappers for boolean and char. These are Boolean
and Character. Autoboxing/unboxing applies to these wrappers, too. For example, consider
the following program:

// Autoboxing/unboxing a Boolean and Character.

class AutoBox5 {
public static void main(String args[]) {

// Autobox/unbox a boolean.
Boolean b = true;

// Below, b is auto-unboxed when used in
// a conditional expression, such as an if.
if(b) System.out.println("b is true");

// Autobox/unbox a char.
Character ch = 'x'; // box a char
char ch2 = ch; // unbox a char

System.out.println("ch2 is " + ch2);
}

}

The output is shown here:

b is true
ch2 is x

The most important thing to notice about this program is the auto-unboxing of b inside
the if conditional expression. As you should recall, the conditional expression that controls
an if must evaluate to type boolean. Because of auto-unboxing, the boolean value contained
within b is automatically unboxed when the conditional expression is evaluated. Thus, with
the advent of autoboxing/unboxing, a Boolean object can be used to control an if statement.

Because of auto-unboxing, a Boolean object can now also be used to control any of Java’s
loop statements. When a Boolean is used as the conditional expression of a while, for, or
do/while, it is automatically unboxed into its boolean equivalent. For example, this is now
perfectly valid code:

Boolean b;
// ...
while(b) { // ...



Autoboxing/Unboxing Helps Prevent Errors
In addition to the convenience that it offers, autoboxing/unboxing can also help prevent
errors. For example, consider the following program:

// An error produced by manual unboxing.
class UnboxingError {
public static void main(String args[]) {

Integer iOb = 1000; // autobox the value 1000

int i = iOb.byteValue(); // manually unbox as byte !!!

System.out.println(i);  // does not display 1000 !
}

}

This program displays not the expected value of 1000, but –24! The reason is that the value
inside iOb is manually unboxed by calling byteValue( ), which causes the truncation of the
value stored in iOb, which is 1,000. This results in the garbage value of –24 being assigned
to i. Auto-unboxing prevents this type of error because the value in iOb will always auto-
unbox into a value compatible with int.

In general, because autoboxing always creates the proper object, and auto-unboxing
always produces the proper value, there is no way for the process to produce the wrong
type of object or value. In the rare instances where you want a type different than that
produced by the automated process, you can still manually box and unbox values. Of
course, the benefits of autoboxing/unboxing are lost. In general, new code should employ
autoboxing/unboxing. It is the way that modern Java code will be written.

A Word of Warning
Now that Java includes autoboxing and auto-unboxing, some might be tempted to use objects
such as Integer or Double exclusively, abandoning primitives altogether. For example, with
autoboxing/unboxing it is possible to write code like this:

// A bad use of autoboxing/unboxing!
Double a, b, c;

a = 10.0;
b = 4.0;

c = Math.sqrt(a*a + b*b);

System.out.println("Hypotenuse is " + c);

In this example, objects of type Double hold values that are used to calculate the hypotenuse
of a right triangle. Although this code is technically correct and does, in fact, work properly,
it is a very bad use of autoboxing/unboxing. It is far less efficient than the equivalent code
written using the primitive type double. The reason is that each autobox and auto-unbox
adds overhead that is not present if the primitive type is used.
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In general, you should restrict your use of the type wrappers to only those cases in which
an object representation of a primitive type is required. Autoboxing/unboxing was not added
to Java as a “back door” way of eliminating the primitive types.

Annotations (Metadata)
Beginning with JDK 5, a new facility was added to Java that enables you to embed
supplemental information into a source file. This information, called an annotation, does not
change the actions of a program. Thus, an annotation leaves the semantics of a program
unchanged. However, this information can be used by various tools during both development
and deployment. For example, an annotation might be processed by a source-code generator.
The term metadata is also used to refer to this feature, but the term annotation is the most
descriptive and more commonly used.

Annotation Basics
An annotation is created through a mechanism based on the interface. Let’s begin with an
example. Here is the declaration for an annotation called MyAnno:

// A simple annotation type.
@interface MyAnno {
String str();
int val();

}

First, notice the @ that precedes the keyword interface. This tells the compiler that
an annotation type is being declared. Next, notice the two members str( ) and val( ). All
annotations consist solely of method declarations. However, you don’t provide bodies for
these methods. Instead, Java implements these methods. Moreover, the methods act much
like fields, as you will see.

An annotation cannot include an extends clause. However, all annotation types
automatically extend the Annotation interface. Thus, Annotation is a super-interface of all
annotations. It is declared within the java.lang.annotation package. It overrides hashCode( ),
equals( ), and toString( ), which are defined by Object. It also specifies annotationType( ),
which returns a Class object that represents the invoking annotation.

Once you have declared an annotation, you can use it to annotate a declaration. Any
type of declaration can have an annotation associated with it. For example, classes, methods,
fields, parameters, and enum constants can be annotated. Even an annotation can be annotated.
In all cases, the annotation precedes the rest of the declaration.

When you apply an annotation, you give values to its members. For example, here is an
example of MyAnno being applied to a method:

// Annotate a method.
@MyAnno(str = "Annotation Example", val = 100)
public static void myMeth() { // ...

This annotation is linked with the method myMeth( ). Look closely at the annotation syntax.
The name of the annotation, preceded by an @, is followed by a parenthesized list of member
initializations. To give a member a value, that member’s name is assigned a value. Therefore,
in the example, the string “Annotation Example” is assigned to the str member of MyAnno.
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Notice that no parentheses follow str in this assignment. When an annotation member is
given a value, only its name is used. Thus, annotation members look like fields in this context.

Specifying a Retention Policy
Before exploring annotations further, it is necessary to discuss annotation retention policies.
A retention policy determines at what point an annotation is discarded. Java defines three
such policies, which are encapsulated within the java.lang.annotation.RetentionPolicy
enumeration. They are SOURCE, CLASS, and RUNTIME.

An annotation with a retention policy of SOURCE is retained only in the source file
and is discarded during compilation.

An annotation with a retention policy of CLASS is stored in the .class file during
compilation. However, it is not available through the JVM during run time.

An annotation with a retention policy of RUNTIME is stored in the .class file during
compilation and is available through the JVM during run time. Thus, RUNTIME retention
offers the greatest annotation persistence.

A retention policy is specified for an annotation by using one of Java’s built-in annotations:
@Retention. Its general form is shown here:

@Retention(retention-policy)

Here, retention-policy must be one of the previously discussed enumeration constants. If no
retention policy is specified for an annotation, then the default policy of CLASS is used.

The following version of MyAnno uses @Retention to specify the RUNTIME retention
policy. Thus, MyAnno will be available to the JVM during program execution.

@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno {
String str();
int val();

}

Obtaining Annotations at Run Time by Use of Reflection
Although annotations are designed mostly for use by other development or deployment tools,
if they specify a retention policy of RUNTIME, then they can be queried at run time by any
Java program through the use of reflection. Reflection is the feature that enables information
about a class to be obtained at run time. The reflection API is contained in the java.lang.reflect
package. There are a number of ways to use reflection, and we won’t examine them all here.
We will, however, walk through a few examples that apply to annotations.

The first step to using reflection is to obtain a Class object that represents the class
whose annotations you want to obtain. Class is one of Java’s built-in classes and is defined
in java.lang. It is described in detail in Part II. There are various ways to obtain a Class
object. One of the easiest is to call getClass( ), which is a method defined by Object. Its
general form is shown here:

final Class getClass( )

It returns the Class object that represents the invoking object. (getClass( ) and several other
reflection-related methods make use of the generics feature. However, because generics are not
discussed until Chapter 14, these methods are shown and used here in their raw form. As a result,
you will see a warning message when you compile the following programs. In Chapter 14, you
will learn about generics in detail.)



274 P a r t I : T h e J a v a L a n g u a g e

After you have obtained a Class object, you can use its methods to obtain information
about the various items declared by the class, including its annotations. If you want to obtain
the annotations associated with a specific item declared within a class, you must first obtain an
object that represents that item. For example, Class supplies (among others) the getMethod( ),
getField( ), and getConstructor( ) methods, which obtain information about a method, field,
and constructor, respectively. These methods return objects of type Method, Field, and
Constructor.

To understand the process, let’s work through an example that obtains the annotations
associated with a method. To do this, you first obtain a Class object that represents the class, and
then call getMethod( ) on that Class object, specifying the name of the method. getMethod( )
has this general form:

Method getMethod(String methName, Class ... paramTypes)

The name of the method is passed in methName. If the method has arguments, then Class
objects representing those types must also be specified by paramTypes. Notice that paramTypes
is a varargs parameter. This means that you can specify as many parameter types as needed,
including zero. getMethod( ) returns a Method object that represents the method. If the method
can’t be found, NoSuchMethodException is thrown.

From a Class, Method, Field, or Constructor object, you can obtain a specific annotation
associated with that object by calling getAnnotation( ). Its general form is shown here:

Annotation getAnnotation(Class annoType)

Here, annoType is a Class object that represents the annotation in which you are interested.
The method returns a reference to the annotation. Using this reference, you can obtain the
values associated with the annotation’s members. The method returns null if the annotation
is not found, which will be the case if the annotation does not have RUNTIME retention.

Here is a program that assembles all of the pieces shown earlier and uses reflection to
display the annotation associated with a method.

import java.lang.annotation.*;
import java.lang.reflect.*;

// An annotation type declaration.
@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno {
String str();
int val();

}

class Meta {

// Annotate a method.
@MyAnno(str = "Annotation Example", val = 100)
public static void myMeth() {
Meta ob = new Meta();

// Obtain the annotation for this method
// and display the values of the members.
try {



// First, get a Class object that represents
// this class.
Class c = ob.getClass();

// Now, get a Method object that represents
// this method.
Method m = c.getMethod("myMeth");

// Next, get the annotation for this class.
MyAnno anno = m.getAnnotation(MyAnno.class);

// Finally, display the values.
System.out.println(anno.str() + " " + anno.val());

} catch (NoSuchMethodException exc) {
System.out.println("Method Not Found.");

}
}

public static void main(String args[]) {
myMeth();

}
}

The output from the program is shown here:

Annotation Example 100

This program uses reflection as described to obtain and display the values of str and val
in the MyAnno annotation associated with myMeth( ) in the Meta class. There are two things
to pay special attention to. First, in this line

MyAnno anno = m.getAnnotation(MyAnno.class);

notice the expression MyAnno.class. This expression evaluates to a Class object of type
MyAnno, the annotation. This construct is called a class literal. You can use this type of
expression whenever a Class object of a known class is needed. For example, this statement
could have been used to obtain the Class object for Meta:

Class c = Meta.class;

Of course, this approach only works when you know the class name of an object in advance,
which might not always be the case. In general, you can obtain a class literal for classes,
interfaces, primitive types, and arrays.

The second point of interest is the way the values associated with str and val are obtained
when they are output by the following line:

System.out.println(anno.str() + " " + anno.val());

Notice that they are invoked using the method-call syntax. This same approach is used
whenever the value of an annotation member is required.
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A Second Reflection Example
In the preceding example, myMeth( ) has no parameters. Thus, when getMethod( ) was
called, only the name myMeth was passed. However, to obtain a method that has parameters,
you must specify class objects representing the types of those parameters as arguments to
getMethod( ). For example, here is a slightly different version of the preceding program:

import java.lang.annotation.*;
import java.lang.reflect.*;

@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno {
String str();
int val();

}

class Meta {

// myMeth now has two arguments.
@MyAnno(str = "Two Parameters", val = 19)
public static void myMeth(String str, int i)
{
Meta ob = new Meta();

try {
Class c = ob.getClass();

// Here, the parameter types are specified.
Method m = c.getMethod("myMeth", String.class, int.class);

MyAnno anno = m.getAnnotation(MyAnno.class);

System.out.println(anno.str() + " " + anno.val());
} catch (NoSuchMethodException exc) {

System.out.println("Method Not Found.");
}

}

public static void main(String args[]) {
myMeth("test", 10);

}
}

The output from this version is shown here:

Two Parameters 19

In this version, myMeth( ) takes a String and an int parameter. To obtain information
about this method, getMethod( ) must be called as shown here:

Method m = c.getMethod("myMeth", String.class, int.class);

Here, the Class objects representing String and int are passed as additional arguments.
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Obtaining All Annotations
You can obtain all annotations that have RUNTIME retention that are associated with an
item by calling getAnnotations( ) on that item. It has this general form:

Annotation[ ] getAnnotations( )

It returns an array of the annotations. getAnnotations( ) can be called on objects of type
Class, Method, Constructor, and Field.

Here is another reflection example that shows how to obtain all annotations associated
with a class and with a method. It declares two annotations. It then uses those annotations
to annotate a class and a method.

// Show all annotations for a class and a method.
import java.lang.annotation.*;
import java.lang.reflect.*;

@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno {
String str();
int val();

}

@Retention(RetentionPolicy.RUNTIME)
@interface What {
String description();

}

@What(description = "An annotation test class")
@MyAnno(str = "Meta2", val = 99)
class Meta2 {

@What(description = "An annotation test method")
@MyAnno(str = "Testing", val = 100)
public static void myMeth() {
Meta2 ob = new Meta2();

try {
Annotation annos[] = ob.getClass().getAnnotations();

// Display all annotations for Meta2.
System.out.println("All annotations for Meta2:");
for(Annotation a : annos)
System.out.println(a);

System.out.println();

// Display all annotations for myMeth.
Method m = ob.getClass( ).getMethod("myMeth");
annos = m.getAnnotations();

System.out.println("All annotations for myMeth:");
for(Annotation a : annos)
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System.out.println(a);

} catch (NoSuchMethodException exc) {
System.out.println("Method Not Found.");

}
}

public static void main(String args[]) {
myMeth();

}
}

The output is shown here:

All annotations for Meta2:
@What(description=An annotation test class)
@MyAnno(str=Meta2, val=99)

All annotations for myMeth:
@What(description=An annotation test method)
@MyAnno(str=Testing, val=100)

The program uses getAnnotations( ) to obtain an array of all annotations associated
with the Meta2 class and with the myMeth( ) method. As explained, getAnnotations( )
returns an array of Annotation objects. Recall that Annotation is a super-interface of all
annotation interfaces and that it overrides toString( ) in Object. Thus, when a reference to
an Annotation is output, its toString( ) method is called to generate a string that describes
the annotation, as the preceding output shows.

The AnnotatedElement Interface
The methods getAnnotation( ) and getAnnotations( ) used by the preceding examples are
defined by the AnnotatedElement interface, which is defined in java.lang.reflect. This
interface supports reflection for annotations and is implemented by the classes Method, Field,
Constructor, Class, and Package.

In addition to getAnnotation( ) and getAnnotations( ), AnnotatedElement defines two
other methods. The first is getDeclaredAnnotations( ), which has this general form:

Annotation[ ] getDeclaredAnnotations( )

It returns all non-inherited annotations present in the invoking object. The second is
isAnnotationPresent( ), which has this general form:

boolean isAnnotationPresent(Class annoType)

It returns true if the annotation specified by annoType is associated with the invoking
object. It returns false otherwise.

NOTEOTE The methods getAnnotation( ) and isAnnotationPresent( ) make use of the generics
feature to ensure type safety. Because generics are not discussed until Chapter 14, their
signatures are shown in this chapter in their raw forms.
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Using Default Values
You can give annotation members default values that will be used if no value is specified
when the annotation is applied. A default value is specified by adding a default clause to
a member’s declaration. It has this general form:

type member( ) default value;

Here, value must be of a type compatible with type.
Here is @MyAnno rewritten to include default values:

// An annotation type declaration that includes defaults.
@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno {
String str() default "Testing";
int val() default 9000;

}

This declaration gives a default value of “Testing” to str and 9000 to val. This means that
neither value needs to be specified when @MyAnno is used. However, either or both can be
given values if desired. Therefore, following are the four ways that @MyAnno can be used:

@MyAnno() // both str and val default
@MyAnno(str = "some string") // val defaults
@MyAnno(val = 100) // str defaults
@MyAnno(str = "Testing", val = 100) // no defaults

The following program demonstrates the use of default values in an annotation.

import java.lang.annotation.*;
import java.lang.reflect.*;

// An annotation type declaration that includes defaults.
@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno {
String str() default "Testing";
int val() default 9000;

}

class Meta3 {

// Annotate a method using the default values.
@MyAnno()
public static void myMeth() {
Meta3 ob = new Meta3();

// Obtain the annotation for this method
// and display the values of the members.
try {
Class c = ob.getClass();

Method m = c.getMethod("myMeth");
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MyAnno anno = m.getAnnotation(MyAnno.class);

System.out.println(anno.str() + " " + anno.val());
} catch (NoSuchMethodException exc) {

System.out.println("Method Not Found.");
}

}

public static void main(String args[]) {
myMeth();

}
}

The output is shown here:

Testing 9000

Marker Annotations
A marker annotation is a special kind of annotation that contains no members. Its sole purpose
is to mark a declaration. Thus, its presence as an annotation is sufficient. The best way to
determine if a marker annotation is present is to use the method isAnnotationPresent( ),
which is a defined by the AnnotatedElement interface.

Here is an example that uses a marker annotation. Because a marker interface contains
no members, simply determining whether it is present or absent is sufficient.

import java.lang.annotation.*;
import java.lang.reflect.*;

// A marker annotation.
@Retention(RetentionPolicy.RUNTIME)
@interface MyMarker { }

class Marker {

// Annotate a method using a marker.
// Notice that no ( ) is needed.
@MyMarker
public static void myMeth() {
Marker ob = new Marker();

try {
Method m = ob.getClass().getMethod("myMeth");

// Determine if the annotation is present.
if(m.isAnnotationPresent(MyMarker.class))
System.out.println("MyMarker is present.");

} catch (NoSuchMethodException exc) {
System.out.println("Method Not Found.");

}
}
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public static void main(String args[]) {
myMeth();

}
}

The output, shown here, confirms that @MyMarker is present:

MyMarker is present.

In the program, notice that you do not need to follow @MyMarker with parentheses
when it is applied. Thus, @MyMarker is applied simply by using its name, like this:

@MyMarker

It is not wrong to supply an empty set of parentheses, but they are not needed.

Single-Member Annotations
A single-member annotation contains only one member. It works like a normal annotation
except that it allows a shorthand form of specifying the value of the member. When only one
member is present, you can simply specify the value for that member when the annotation
is applied—you don’t need to specify the name of the member. However, in order to use
this shorthand, the name of the member must be value.

Here is an example that creates and uses a single-member annotation:

import java.lang.annotation.*;
import java.lang.reflect.*;

// A single-member annotation.
@Retention(RetentionPolicy.RUNTIME)
@interface MySingle {
int value(); // this variable name must be value

}

class Single {

// Annotate a method using a single-member annotation.
@MySingle(100)
public static void myMeth() {
Single ob = new Single();

try {
Method m = ob.getClass().getMethod("myMeth");

MySingle anno = m.getAnnotation(MySingle.class);

System.out.println(anno.value()); // displays 100

} catch (NoSuchMethodException exc) {
System.out.println("Method Not Found.");

}
}



public static void main(String args[]) {
myMeth();

}
}

As expected, this program displays the value 100. In the program, @MySingle is used to
annotate myMeth( ), as shown here:

@MySingle(100)

Notice that value = need not be specified.
You can use the single-value syntax when applying an annotation that has other members,

but those other members must all have default values. For example, here the value xyz is added,
with a default value of zero:

@interface SomeAnno {
int value();
int xyz() default 0;

}

In cases in which you want to use the default for xyz, you can apply @SomeAnno, as
shown next, by simply specifying the value of value by using the single-member syntax.

@SomeAnno(88)

In this case, xyz defaults to zero, and value gets the value 88. Of course, to specify a different
value for xyz requires that both members be explicitly named, as shown here:

@SomeAnno(value = 88, xyz = 99)

Remember, whenever you are using a single-member annotation, the name of that member
must be value.

The Built-In Annotations
Java defines many built-in annotations. Most are specialized, but seven are general purpose.
Of these, four are imported from java.lang.annotation: @Retention, @Documented, @Target,
and @Inherited. Three—@Override, @Deprecated, and @SuppressWarnings—are included
in java.lang. Each is described here.

@Retention
@Retention is designed to be used only as an annotation to another annotation. It specifies
the retention policy as described earlier in this chapter.

@Documented
The @Documented annotation is a marker interface that tells a tool that an annotation is to
be documented. It is designed to be used only as an annotation to an annotation declaration.

@Target
The @Target annotation specifies the types of declarations to which an annotation can be
applied. It is designed to be used only as an annotation to another annotation. @Target takes
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one argument, which must be a constant from the ElementType enumeration. This argument
specifies the types of declarations to which the annotation can be applied. The constants are
shown here along with the type of declaration to which they correspond.

Target Constant Annotation Can Be Applied To

ANNOTATION_TYPE Another annotation

CONSTRUCTOR Constructor

FIELD Field

LOCAL_VARIABLE Local variable

METHOD Method

PACKAGE Package

PARAMETER Parameter

TYPE Class, interface, or enumeration

You can specify one or more of these values in a @Target annotation. To specify multiple
values, you must specify them within a braces-delimited list. For example, to specify that an
annotation applies only to fields and local variables, you can use this @Target annotation:

@Target( { ElementType.FIELD, ElementType.LOCAL_VARIABLE } )

@Inherited
@Inherited is a marker annotation that can be used only on another annotation declaration.
Furthermore, it affects only annotations that will be used on class declarations. @Inherited
causes the annotation for a superclass to be inherited by a subclass. Therefore, when a request
for a specific annotation is made to the subclass, if that annotation is not present in the subclass,
then its superclass is checked. If that annotation is present in the superclass, and if it is annotated
with @Inherited, then that annotation will be returned.

@Override
@Override is a marker annotation that can be used only on methods. A method annotated
with @Override must override a method from a superclass. If it doesn’t, a compile-time
error will result. It is used to ensure that a superclass method is actually overridden, and
not simply overloaded.

@Deprecated
@Deprecated is a marker annotation. It indicates that a declaration is obsolete and has been
replaced by a newer form.

@SuppressWarnings
@SuppressWarnings specifies that one or more warnings that might be issued by the compiler
are to be suppressed. The warnings to suppress are specified by name, in string form. This
annotation can be applied to any type of declaration.
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Some Restrictions
There are a number of restrictions that apply to annotation declarations. First, no annotation
can inherit another. Second, all methods declared by an annotation must be without parameters.
Furthermore, they must return one of the following:

• A primitive type, such as int or double

• An object of type String or Class

• An enum type

• Another annotation type

• An array of one of the preceding types

Annotations cannot be generic. In other words, they cannot take type parameters. (Generics
are described in Chapter 14.) Finally, annotation methods cannot specify a throws clause.
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13
I/O, Applets, and

Other Topics

This chapter introduces two of Java’s most important packages: io and applet. The io
package supports Java’s basic I/O (input/output) system, including file I/O. The applet
package supports applets. Support for both I/O and applets comes from Java’s core

API libraries, not from language keywords. For this reason, an in-depth discussion of these
topics is found in Part II of this book, which examines Java’s API classes. This chapter discusses
the foundation of these two subsystems so that you can see how they are integrated into the
Java language and how they fit into the larger context of the Java programming and execution
environment. This chapter also examines the last of Java’s keywords: transient, volatile,
instanceof, native, strictfp, and assert. It concludes by examining static import and by
describing another use for the this keyword.

I/O Basics
As you may have noticed while reading the preceding 12 chapters, not much use has been
made of I/O in the example programs. In fact, aside from print( ) and println( ), none of the
I/O methods have been used significantly. The reason is simple: most real applications of
Java are not text-based, console programs. Rather, they are graphically oriented programs that
rely upon Java’s Abstract Window Toolkit (AWT) or Swing for interaction with the user.
Although text-based programs are excellent as teaching examples, they do not constitute an
important use for Java in the real world. Also, Java’s support for console I/O is limited and
somewhat awkward to use—even in simple example programs. Text-based console I/O is
just not very important to Java programming.

The preceding paragraph notwithstanding, Java does provide strong, flexible support
for I/O as it relates to files and networks. Java’s I/O system is cohesive and consistent. In
fact, once you understand its fundamentals, the rest of the I/O system is easy to master.
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Streams
Java programs perform I/O through streams. A stream is an abstraction that either produces
or consumes information. A stream is linked to a physical device by the Java I/O system.
All streams behave in the same manner, even if the actual physical devices to which they are
linked differ. Thus, the same I/O classes and methods can be applied to any type of device.
This means that an input stream can abstract many different kinds of input: from a disk file,
a keyboard, or a network socket. Likewise, an output stream may refer to the console, a disk
file, or a network connection. Streams are a clean way to deal with input/output without
having every part of your code understand the difference between a keyboard and a network,
for example. Java implements streams within class hierarchies defined in the java.io package.

Byte Streams and Character Streams
Java defines two types of streams: byte and character. Byte streams provide a convenient
means for handling input and output of bytes. Byte streams are used, for example, when
reading or writing binary data. Character streams provide a convenient means for handling
input and output of characters. They use Unicode and, therefore, can be internationalized.
Also, in some cases, character streams are more efficient than byte streams.

The original version of Java (Java 1.0) did not include character streams and, thus, all
I/O was byte-oriented. Character streams were added by Java 1.1, and certain byte-oriented
classes and methods were deprecated. This is why older code that doesn’t use character streams
should be updated to take advantage of them, where appropriate.

One other point: at the lowest level, all I/O is still byte-oriented. The character-based
streams simply provide a convenient and efficient means for handling characters.

An overview of both byte-oriented streams and character-oriented streams is presented
in the following sections.

The Byte Stream Classes
Byte streams are defined by using two class hierarchies. At the top are two abstract classes:
InputStream and OutputStream. Each of these abstract classes has several concrete subclasses
that handle the differences between various devices, such as disk files, network connections,
and even memory buffers. The byte stream classes are shown in Table 13-1. A few of these
classes are discussed later in this section. Others are described in Part II. Remember, to use
the stream classes, you must import java.io.

The abstract classes InputStream and OutputStream define several key methods that
the other stream classes implement. Two of the most important are read( ) and write( ),
which, respectively, read and write bytes of data. Both methods are declared as abstract
inside InputStream and OutputStream. They are overridden by derived stream classes.

The Character Stream Classes
Character streams are defined by using two class hierarchies. At the top are two abstract
classes, Reader and Writer. These abstract classes handle Unicode character streams. Java
has several concrete subclasses of each of these. The character stream classes are shown in
Table 13-2.

The abstract classes Reader and Writer define several key methods that the other stream
classes implement. Two of the most important methods are read( ) and write( ), which read
and write characters of data, respectively. These methods are overridden by derived stream
classes.
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Stream Class Meaning

BufferedInputStream Buffered input stream

BufferedOutputStream Buffered output stream

ByteArrayInputStream Input stream that reads from a byte array

ByteArrayOutputStream Output stream that writes to a byte array

DataInputStream An input stream that contains methods for reading the Java standard
data types

DataOutputStream An output stream that contains methods for writing the Java standard
data types

FileInputStream Input stream that reads from a file

FileOutputStream Output stream that writes to a file

FilterInputStream Implements InputStream

FilterOutputStream Implements OutputStream

InputStream Abstract class that describes stream input

ObjectInputStream Input stream for objects

ObjectOutputStream Output stream for objects

OutputStream Abstract class that describes stream output

PipedInputStream Input pipe

PipedOutputStream Output pipe

PrintStream Output stream that contains print( ) and println( )

PushbackInputStream Input stream that supports one-byte “unget,” which returns a byte to
the input stream

RandomAccessFile Supports random access file I/O

SequenceInputStream Input stream that is a combination of two or more input streams that
will be read sequentially, one after the other

TABLE 13-1 The Byte Stream Classes

Stream Class Meaning

BufferedReader Buffered input character stream

BufferedWriter Buffered output character stream

CharArrayReader Input stream that reads from a character array

CharArrayWriter Output stream that writes to a character array

FileReader Input stream that reads from a file

FileWriter Output stream that writes to a file

FilterReader Filtered reader

FilterWriter Filtered writer

TABLE 13-2 The Character Stream I/O Classes
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The Predefined Streams
As you know, all Java programs automatically import the java.lang package. This package
defines a class called System, which encapsulates several aspects of the run-time environment.
For example, using some of its methods, you can obtain the current time and the settings of
various properties associated with the system. System also contains three predefined stream
variables: in, out, and err. These fields are declared as public, static, and final within
System. This means that they can be used by any other part of your program and without
reference to a specific System object.

System.out refers to the standard output stream. By default, this is the console. System.in
refers to standard input, which is the keyboard by default. System.err refers to the standard
error stream, which also is the console by default. However, these streams may be redirected
to any compatible I/O device.

System.in is an object of type InputStream; System.out and System.err are objects of
type PrintStream. These are byte streams, even though they typically are used to read and
write characters from and to the console. As you will see, you can wrap these within character-
based streams, if desired.

The preceding chapters have been using System.out in their examples. You can use
System.err in much the same way. As explained in the next section, use of System.in is
a little more complicated.

Reading Console Input
In Java 1.0, the only way to perform console input was to use a byte stream, and older code
that uses this approach persists. Today, using a byte stream to read console input is still
technically possible, but doing so is not recommended. The preferred method of reading
console input is to use a character-oriented stream, which makes your program easier to
internationalize and maintain.

Stream Class Meaning

InputStreamReader Input stream that translates bytes to characters

LineNumberReader Input stream that counts lines

OutputStreamWriter Output stream that translates characters to bytes

PipedReader Input pipe

PipedWriter Output pipe

PrintWriter Output stream that contains print( ) and println( )

PushbackReader Input stream that allows characters to be returned to the input stream

Reader Abstract class that describes character stream input

StringReader Input stream that reads from a string

StringWriter Output stream that writes to a string

Writer Abstract class that describes character stream output

TABLE 13-2 The Character Stream I/O Classes (continued)
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In Java, console input is accomplished by reading from System.in. To obtain a character-
based stream that is attached to the console, wrap System.in in a BufferedReader object.
BufferedReader supports a buffered input stream. Its most commonly used constructor
is shown here:

BufferedReader(Reader inputReader)

Here, inputReader is the stream that is linked to the instance of BufferedReader that is being
created. Reader is an abstract class. One of its concrete subclasses is InputStreamReader,
which converts bytes to characters. To obtain an InputStreamReader object that is linked to
System.in, use the following constructor:

InputStreamReader(InputStream inputStream)

Because System.in refers to an object of type InputStream, it can be used for inputStream.
Putting it all together, the following line of code creates a BufferedReader that is connected
to the keyboard:

BufferedReader br = new BufferedReader(new
InputStreamReader(System.in));

After this statement executes, br is a character-based stream that is linked to the console
through System.in.

Reading Characters
To read a character from a BufferedReader, use read( ). The version of read( ) that we will
be using is

int read( ) throws IOException

Each time that read( ) is called, it reads a character from the input stream and returns it as
an integer value. It returns –1 when the end of the stream is encountered. As you can see,
it can throw an IOException.

The following program demonstrates read( ) by reading characters from the console
until the user types a "q.” Notice that any I/O exceptions that might be generated are
simply thrown out of main( ). Such an approach is common when reading from the console,
but you can handle these types of errors yourself, if you chose.

// Use a BufferedReader to read characters from the console.
import java.io.*;

class BRRead {
public static void main(String args[])
throws IOException

{
char c;
BufferedReader br = new

BufferedReader(new InputStreamReader(System.in));
System.out.println("Enter characters, 'q' to quit.");
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// read characters
do {
c = (char) br.read();
System.out.println(c);

} while(c != 'q');
}

}

Here is a sample run:

Enter characters, 'q' to quit.
123abcq
1
2
3
a
b
c
q

This output may look a little different from what you expected, because System.in is line
buffered, by default. This means that no input is actually passed to the program until you
press ENTER. As you can guess, this does not make read( ) particularly valuable for interactive
console input.

Reading Strings
To read a string from the keyboard, use the version of readLine( ) that is a member of the
BufferedReader class. Its general form is shown here:

String readLine( ) throws IOException

As you can see, it returns a String object.
The following program demonstrates BufferedReader and the readLine( ) method;

the program reads and displays lines of text until you enter the word “stop”:

// Read a string from console using a BufferedReader.
import java.io.*;

class BRReadLines {
public static void main(String args[])
throws IOException

{
// create a BufferedReader using System.in
BufferedReader br = new BufferedReader(new

InputStreamReader(System.in));
String str;

System.out.println("Enter lines of text.");
System.out.println("Enter 'stop' to quit.");
do {
str = br.readLine();
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System.out.println(str);
} while(!str.equals("stop"));

}
}

The next example creates a tiny text editor. It creates an array of String objects and then
reads in lines of text, storing each line in the array. It will read up to 100 lines or until you
enter “stop.” It uses a BufferedReader to read from the console.

// A tiny editor.
import java.io.*;

class TinyEdit {
public static void main(String args[])
throws IOException

{
// create a BufferedReader using System.in
BufferedReader br = new BufferedReader(new

InputStreamReader(System.in));
String str[] = new String[100];

System.out.println("Enter lines of text.");
System.out.println("Enter 'stop' to quit.");
for(int i=0; i<100; i++) {
str[i] = br.readLine();
if(str[i].equals("stop")) break;

}

System.out.println("\nHere is your file:");

// display the lines
for(int i=0; i<100; i++) {
if(str[i].equals("stop")) break;
System.out.println(str[i]);

}
}

}

Here is a sample run:

Enter lines of text.
Enter 'stop' to quit.
This is line one.
This is line two.
Java makes working with strings easy.
Just create String objects.
stop
Here is your file:
This is line one.
This is line two.
Java makes working with strings easy.
Just create String objects.
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Writing Console Output
Console output is most easily accomplished with print( ) and println( ), described earlier,
which are used in most of the examples in this book. These methods are defined by the
class PrintStream (which is the type of object referenced by System.out). Even though
System.out is a byte stream, using it for simple program output is still acceptable. However,
a character-based alternative is described in the next section.

Because PrintStream is an output stream derived from OutputStream, it also implements
the low-level method write( ). Thus, write( ) can be used to write to the console. The simplest
form of write( ) defined by PrintStream is shown here:

void write(int byteval)

This method writes to the stream the byte specified by byteval. Although byteval is declared
as an integer, only the low-order eight bits are written. Here is a short example that uses
write( ) to output the character “A” followed by a newline to the screen:

// Demonstrate System.out.write().
class WriteDemo {
public static void main(String args[]) {
int b;

b = 'A';
System.out.write(b);
System.out.write('\n');

}
}

You will not often use write( ) to perform console output (although doing so might be
useful in some situations), because print( ) and println( ) are substantially easier to use.

The PrintWriter Class
Although using System.out to write to the console is acceptable, its use is recommended
mostly for debugging purposes or for sample programs, such as those found in this book.
For real-world programs, the recommended method of writing to the console when using
Java is through a PrintWriter stream. PrintWriter is one of the character-based classes.
Using a character-based class for console output makes it easier to internationalize your
program.

PrintWriter defines several constructors. The one we will use is shown here:

PrintWriter(OutputStream outputStream, boolean flushOnNewline)

Here, outputStream is an object of type OutputStream, and flushOnNewline controls whether
Java flushes the output stream every time a println( ) method is called. If flushOnNewline is
true, flushing automatically takes place. If false, flushing is not automatic.

PrintWriter supports the print( ) and println( ) methods for all types including Object.
Thus, you can use these methods in the same way as they have been used with System.out.
If an argument is not a simple type, the PrintWriter methods call the object’s toString( )
method and then print the result.



To write to the console by using a PrintWriter, specify System.out for the output stream
and flush the stream after each newline. For example, this line of code creates a PrintWriter
that is connected to console output:

PrintWriter pw = new PrintWriter(System.out, true);

The following application illustrates using a PrintWriter to handle console output:

// Demonstrate PrintWriter
import java.io.*;

public class PrintWriterDemo {
public static void main(String args[]) {
PrintWriter pw = new PrintWriter(System.out, true);
pw.println("This is a string");
int i = -7;
pw.println(i);
double d = 4.5e-7;
pw.println(d);

}
}

The output from this program is shown here:

This is a string
-7
4.5E-7

Remember, there is nothing wrong with using System.out to write simple text output
to the console when you are learning Java or debugging your programs. However, using a
PrintWriter will make your real-world applications easier to internationalize. Because no
advantage is gained by using a PrintWriter in the sample programs shown in this book, we
will continue to use System.out to write to the console.

Reading and Writing Files
Java provides a number of classes and methods that allow you to read and write files. In Java,
all files are byte-oriented, and Java provides methods to read and write bytes from and to a
file. However, Java allows you to wrap a byte-oriented file stream within a character-based
object. This technique is described in Part II. This chapter examines the basics of file I/O.

Two of the most often-used stream classes are FileInputStream and FileOutputStream,
which create byte streams linked to files. To open a file, you simply create an object of one of
these classes, specifying the name of the file as an argument to the constructor. While both
classes support additional, overridden constructors, the following are the forms that we will
be using:

FileInputStream(String fileName) throws FileNotFoundException
FileOutputStream(String fileName) throws FileNotFoundException
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Here, fileName specifies the name of the file that you want to open. When you create an
input stream, if the file does not exist, then FileNotFoundException is thrown. For output
streams, if the file cannot be created, then FileNotFoundException is thrown. When an
output file is opened, any preexisting file by the same name is destroyed.

When you are done with a file, you should close it by calling close( ). It is defined by
both FileInputStream and FileOutputStream, as shown here:

void close( ) throws IOException

To read from a file, you can use a version of read( ) that is defined within FileInputStream.
The one that we will use is shown here:

int read( ) throws IOException

Each time that it is called, it reads a single byte from the file and returns the byte as an integer
value. read( ) returns –1 when the end of the file is encountered. It can throw an IOException.

The following program uses read( ) to input and display the contents of a text file, the name
of which is specified as a command-line argument. Note the try/catch blocks that handle
two errors that might occur when this program is used—the specified file not being found
or the user forgetting to include the name of the file. You can use this same approach
whenever you use command-line arguments. Other I/O exceptions that might occur
are simply thrown out of main( ), which is acceptable for this simple example. However,
often you will want to handle all I/O exceptions yourself when working with files.

/* Display a text file.

To use this program, specify the name
of the file that you want to see.
For example, to see a file called TEST.TXT,
use the following command line.

java ShowFile TEST.TXT

*/

import java.io.*;

class ShowFile {
public static void main(String args[])
throws IOException

{
int i;
FileInputStream fin;

try {
fin = new FileInputStream(args[0]);

} catch(FileNotFoundException e) {
System.out.println("File Not Found");
return;

} catch(ArrayIndexOutOfBoundsException e) {
System.out.println("Usage: ShowFile File");
return;

}
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// read characters until EOF is encountered
do {
i = fin.read();
if(i != -1) System.out.print((char) i);

} while(i != -1);

fin.close();
}

}

To write to a file, you can use the write( ) method defined by FileOutputStream. Its
simplest form is shown here:

void write(int byteval) throws IOException

This method writes the byte specified by byteval to the file. Although byteval is declared as
an integer, only the low-order eight bits are written to the file. If an error occurs during
writing, an IOException is thrown. The next example uses write( ) to copy a text file:

/* Copy a text file.

To use this program, specify the name
of the source file and the destination file.
For example, to copy a file called FIRST.TXT
to a file called SECOND.TXT, use the following
command line.

java CopyFile FIRST.TXT SECOND.TXT
*/

import java.io.*;

class CopyFile {
public static void main(String args[])
throws IOException

{
int i;
FileInputStream fin;
FileOutputStream fout;

try {
// open input file
try {
fin = new FileInputStream(args[0]);

} catch(FileNotFoundException e) {
System.out.println("Input File Not Found");
return;

}
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// open output file
try {
fout = new FileOutputStream(args[1]);

} catch(FileNotFoundException e) {
System.out.println("Error Opening Output File");
return;

}
} catch(ArrayIndexOutOfBoundsException e) {
System.out.println("Usage: CopyFile From To");
return;

}

// Copy File
try {
do {
i = fin.read();
if(i != -1) fout.write(i);

} while(i != -1);
} catch(IOException e) {
System.out.println("File Error");

}

fin.close();
fout.close();

}
}

Notice the way that potential I/O errors are handled in this program. Unlike some other
computer languages, including C and C++, which use error codes to report file errors, Java
uses its exception handling mechanism. Not only does this make file handling cleaner, but
it also enables Java to easily differentiate the end-of-file condition from file errors when
input is being performed. In C/C++, many input functions return the same value when
an error occurs and when the end of the file is reached. (That is, in C/C++, an EOF condition
often is mapped to the same value as an input error.) This usually means that the programmer
must include extra program statements to determine which event actually occurred. In Java,
errors are passed to your program via exceptions, not by values returned by read( ).
Thus, when read( ) returns –1, it means only one thing: the end of the file has been
encountered.

Applet Fundamentals
All of the preceding examples in this book have been Java console-based applications. However,
these types of applications constitute only one class of Java programs. Another type of program
is the applet. As mentioned in Chapter 1, applets are small applications that are accessed on an
Internet server, transported over the Internet, automatically installed, and run as part of a web
document. After an applet arrives on the client, it has limited access to resources so that it
can produce a graphical user interface and run complex computations without introducing
the risk of viruses or breaching data integrity.
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Many of the issues connected with the creation and use of applets are found in Part II,
when the applet package is examined and also when Swing is described in Part III. However,
the fundamentals connected to the creation of an applet are presented here, because applets
are not structured in the same way as the programs that have been used thus far. As you
will see, applets differ from console-based applications in several key areas.

Let’s begin with the simple applet shown here:

import java.awt.*;
import java.applet.*;

public class SimpleApplet extends Applet {
public void paint(Graphics g) {
g.drawString("A Simple Applet", 20, 20);

}
}

This applet begins with two import statements. The first imports the Abstract Window
Toolkit (AWT) classes. Applets interact with the user (either directly or indirectly) through
the AWT, not through the console-based I/O classes. The AWT contains support for a
window-based, graphical user interface. As you might expect, the AWT is quite large
and sophisticated, and a complete discussion of it consumes several chapters in Part II of
this book. Fortunately, this simple applet makes very limited use of the AWT. (Applets can
also use Swing to provide the graphical user interface, but this approach is described later in
this book.) The second import statement imports the applet package, which contains the
class Applet. Every applet that you create must be a subclass of Applet.

The next line in the program declares the class SimpleApplet. This class must be declared
as public, because it will be accessed by code that is outside the program.

Inside SimpleApplet, paint( ) is declared. This method is defined by the AWT and must
be overridden by the applet. paint( ) is called each time that the applet must redisplay its
output. This situation can occur for several reasons. For example, the window in which the
applet is running can be overwritten by another window and then uncovered. Or, the applet
window can be minimized and then restored. paint( ) is also called when the applet begins
execution. Whatever the cause, whenever the applet must redraw its output, paint( ) is called.
The paint( ) method has one parameter of type Graphics. This parameter contains the graphics
context, which describes the graphics environment in which the applet is running. This context
is used whenever output to the applet is required.

Inside paint( ) is a call to drawString( ), which is a member of the Graphics class.
This method outputs a string beginning at the specified X,Y location. It has the following
general form:

void drawString(String message, int x, int y)

Here, message is the string to be output beginning at x,y. In a Java window, the upper-left
corner is location 0,0. The call to drawString( ) in the applet causes the message “A Simple
Applet” to be displayed beginning at location 20,20.

Notice that the applet does not have a main( ) method. Unlike Java programs, applets
do not begin execution at main( ). In fact, most applets don’t even have a main( ) method.
Instead, an applet begins execution when the name of its class is passed to an applet viewer
or to a network browser.
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After you enter the source code for SimpleApplet, compile in the same way that you
have been compiling programs. However, running SimpleApplet involves a different process.
In fact, there are two ways in which you can run an applet:

• Executing the applet within a Java-compatible web browser.

• Using an applet viewer, such as the standard tool, appletviewer. An applet viewer
executes your applet in a window. This is generally the fastest and easiest way to
test your applet.

Each of these methods is described next.
To execute an applet in a web browser, you need to write a short HTML text file that

contains a tag that loads the applet. Currently, Sun recommends using the APPLET tag for
this purpose. Here is the HTML file that executes SimpleApplet:

<applet code="SimpleApplet" width=200 height=60>
</applet>

The width and height statements specify the dimensions of the display area used by the
applet. (The APPLET tag contains several other options that are examined more closely in
Part II.) After you create this file, you can execute your browser and then load this file, which
causes SimpleApplet to be executed.

To execute SimpleApplet with an applet viewer, you may also execute the HTML file
shown earlier. For example, if the preceding HTML file is called RunApp.html, then the
following command line will run SimpleApplet:

C:\>appletviewer RunApp.html

However, a more convenient method exists that you can use to speed up testing. Simply
include a comment at the head of your Java source code file that contains the APPLET tag.
By doing so, your code is documented with a prototype of the necessary HTML statements,
and you can test your compiled applet merely by starting the applet viewer with your Java
source code file. If you use this method, the SimpleApplet source file looks like this:

import java.awt.*;
import java.applet.*;
/*
<applet code="SimpleApplet" width=200 height=60>
</applet>
*/

public class SimpleApplet extends Applet {
public void paint(Graphics g) {
g.drawString("A Simple Applet", 20, 20);

}
}

With this approach, you can quickly iterate through applet development by using these
three steps:

1. Edit a Java source file.

2. Compile your program.
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3. Execute the applet viewer, specifying the name of your applet’s source file. The applet
viewer will encounter the APPLET tag within the comment and execute your applet.

The window produced by SimpleApplet, as displayed by the applet viewer, is shown in
the following illustration:

While the subject of applets is more fully discussed later in this book, here are the key
points that you should remember now:

• Applets do not need a main( ) method.

• Applets must be run under an applet viewer or a Java-compatible browser.

• User I/O is not accomplished with Java’s stream I/O classes. Instead, applets use
the interface provided by the AWT or Swing.

The transient and volatile Modifiers
Java defines two interesting type modifiers: transient and volatile. These modifiers are used
to handle somewhat specialized situations.

When an instance variable is declared as transient, then its value need not persist when
an object is stored. For example:

class T {
transient int a; // will not persist
int b; // will persist

}

Here, if an object of type T is written to a persistent storage area, the contents of a would
not be saved, but the contents of b would.

The volatile modifier tells the compiler that the variable modified by volatile can be
changed unexpectedly by other parts of your program. One of these situations involves
multithreaded programs. (You saw an example of this in Chapter 11.) In a multithreaded
program, sometimes two or more threads share the same variable. For efficiency considerations,
each thread can keep its own, private copy of such a shared variable. The real (or master) copy of
the variable is updated at various times, such as when a synchronized method is entered. While
this approach works fine, it may be inefficient at times. In some cases, all that really matters is
that the master copy of a variable always reflects its current state. To ensure this, simply specify
the variable as volatile, which tells the compiler that it must always use the master copy of a
volatile variable (or, at least, always keep any private copies up-to-date with the master copy,
and vice versa). Also, accesses to the master variable must be executed in the precise order in
which they are executed on any private copy.
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Using instanceof
Sometimes, knowing the type of an object during run time is useful. For example, you might
have one thread of execution that generates various types of objects, and another thread
that processes these objects. In this situation, it might be useful for the processing thread to
know the type of each object when it receives it. Another situation in which knowledge of
an object’s type at run time is important involves casting. In Java, an invalid cast causes a
run-time error. Many invalid casts can be caught at compile time. However, casts involving
class hierarchies can produce invalid casts that can be detected only at run time. For example,
a superclass called A can produce two subclasses, called B and C. Thus, casting a B object
into type A or casting a C object into type A is legal, but casting a B object into type C (or
vice versa) isn’t legal. Because an object of type A can refer to objects of either B or C, how
can you know, at run time, what type of object is actually being referred to before attempting
the cast to type C? It could be an object of type A, B, or C. If it is an object of type B, a run-
time exception will be thrown. Java provides the run-time operator instanceof to answer
this question.

The instanceof operator has this general form:

objref instanceof type

Here, objref is a reference to an instance of a class, and type is a class type. If objref is of the
specified type or can be cast into the specified type, then the instanceof operator evaluates to
true. Otherwise, its result is false. Thus, instanceof is the means by which your program can
obtain run-time type information about an object.

The following program demonstrates instanceof:

// Demonstrate instanceof operator.
class A {
int i, j;

}

class B {
int i, j;

}

class C extends A {
int k;

}

class D extends A {
int k;

}

class InstanceOf {
public static void main(String args[]) {
A a = new A();
B b = new B();
C c = new C();
D d = new D();
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if(a instanceof A)
System.out.println("a is instance of A");

if(b instanceof B)
System.out.println("b is instance of B");

if(c instanceof C)
System.out.println("c is instance of C");

if(c instanceof A)
System.out.println("c can be cast to A");

if(a instanceof C)
System.out.println("a can be cast to C");

System.out.println();

// compare types of derived types
A ob;

ob = d; // A reference to d
System.out.println("ob now refers to d");
if(ob instanceof D)
System.out.println("ob is instance of D");

System.out.println();

ob = c; // A reference to c
System.out.println("ob now refers to c");

if(ob instanceof D)
System.out.println("ob can be cast to D");

else
System.out.println("ob cannot be cast to D");

if(ob instanceof A)
System.out.println("ob can be cast to A");

System.out.println();

// all objects can be cast to Object
if(a instanceof Object)
System.out.println("a may be cast to Object");

if(b instanceof Object)
System.out.println("b may be cast to Object");

if(c instanceof Object)
System.out.println("c may be cast to Object");

if(d instanceof Object)
System.out.println("d may be cast to Object");

}
}

The output from this program is shown here:

a is instance of A
b is instance of B



c is instance of C
c can be cast to A

ob now refers to d
ob is instance of D

ob now refers to c
ob cannot be cast to D
ob can be cast to A

a may be cast to Object
b may be cast to Object
c may be cast to Object
d may be cast to Object

The instanceof operator isn’t needed by most programs, because, generally, you know
the type of object with which you are working. However, it can be very useful when you’re
writing generalized routines that operate on objects of a complex class hierarchy.

strictfp
A relatively new keyword is strictfp. With the creation of Java 2, the floating-point computation
model was relaxed slightly. Specifically, the new model does not require the truncation of
certain intermediate values that occur during a computation. This prevents overflow or
underflow in some cases. By modifying a class or a method with strictfp, you ensure that
floating-point calculations (and thus all truncations) take place precisely as they did in
earlier versions of Java. When a class is modified by strictfp, all the methods in the class
are also modified by strictfp automatically.

For example, the following fragment tells Java to use the original floating-point model
for calculations in all methods defined within MyClass:

strictfp class MyClass { //...

Frankly, most programmers never need to use strictfp, because it affects only a very small
class of problems.

Native Methods
Although it is rare, occasionally you may want to call a subroutine that is written in a
language other than Java. Typically, such a subroutine exists as executable code for the CPU
and environment in which you are working—that is, native code. For example, you may
want to call a native code subroutine to achieve faster execution time. Or, you may want to
use a specialized, third-party library, such as a statistical package. However, because Java
programs are compiled to bytecode, which is then interpreted (or compiled on-the-fly) by
the Java run-time system, it would seem impossible to call a native code subroutine from
within your Java program. Fortunately, this conclusion is false. Java provides the native
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keyword, which is used to declare native code methods. Once declared, these methods can
be called from inside your Java program just as you call any other Java method.

To declare a native method, precede the method with the native modifier, but do not
define any body for the method. For example:

public native int meth() ;

After you declare a native method, you must write the native method and follow a rather
complex series of steps to link it with your Java code.

Most native methods are written in C. The mechanism used to integrate C code with a
Java program is called the Java Native Interface (JNI). A detailed description of the JNI is
beyond the scope of this book, but the following description provides sufficient information
for most applications.

NOTEOTE The precise steps that you need to follow will vary between different Java environments.
They also depend on the language that you are using to implement the native method. The
following discussion assumes a Windows environment. The language used to implement the
native method is C.

The easiest way to understand the process is to work through an example. To begin, enter
the following short program, which uses a native method called test( ):

// A simple example that uses a native method.
public class NativeDemo {
int i;
public static void main(String args[]) {
NativeDemo ob = new NativeDemo();

ob.i = 10;
System.out.println("This is ob.i before the native method:" +

ob.i);
ob.test(); // call a native method
System.out.println("This is ob.i after the native method:" +

ob.i);
}
// declare native method
public native void test() ;

// load DLL that contains static method
static {
System.loadLibrary("NativeDemo");

}
}

Notice that the test( ) method is declared as native and has no body. This is the method that
we will implement in C shortly. Also notice the static block. As explained earlier in this book,
a static block is executed only once, when your program begins execution (or, more precisely,
when its class is first loaded). In this case, it is used to load the dynamic link library that
contains the native implementation of test( ). (You will see how to create this library soon.)
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The library is loaded by the loadLibrary( ) method, which is part of the System class.
This is its general form:

static void loadLibrary(String filename)

Here, filename is a string that specifies the name of the file that holds the library. For the
Windows environment, this file is assumed to have the .DLL extension.

After you enter the program, compile it to produce NativeDemo.class. Next, you must
use javah.exe to produce one file: NativeDemo.h. (javah.exe is included in the JDK.) You
will include NativeDemo.h in your implementation of test( ). To produce NativeDemo.h,
use the following command:

javah -jni NativeDemo

This command produces a header file called NativeDemo.h. This file must be included in
the C file that implements test( ). The output produced by this command is shown here:

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class NativeDemo */

#ifndef _Included_NativeDemo
#define _Included_NativeDemo
#ifdef _ _cplusplus
extern "C" {
#endif
/*
* Class:     NativeDemo
* Method:    test
* Signature: ()V
*/

JNIEXPORT void JNICALL Java_NativeDemo_test
(JNIEnv *, jobject);

#ifdef _ _cplusplus
}
#endif
#endif

Pay special attention to the following line, which defines the prototype for the test( )
function that you will create:

JNIEXPORT void JNICALL Java_NativeDemo_test(JNIEnv *, jobject);

Notice that the name of the function is Java_NativeDemo_test( ). You must use this as the
name of the native function that you implement. That is, instead of creating a C function called
test( ), you will create one called Java_NativeDemo_test( ). The NativeDemo component of the
prefix is added because it identifies the test( ) method as being part of the NativeDemo
class. Remember, another class may define its own native test( ) method that is completely
different from the one declared by NativeDemo. Including the class name in the prefix
provides a way to differentiate between differing versions. As a general rule, native functions
will be given a name whose prefix includes the name of the class in which they are declared.
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After producing the necessary header file, you can write your implementation of test( )
and store it in a file named NativeDemo.c:

/* This file contains the C version of the
test() method.

*/

#include <jni.h>
#include "NativeDemo.h"
#include <stdio.h>

JNIEXPORT void JNICALL Java_NativeDemo_test(JNIEnv *env, jobject obj)
{
jclass cls;
jfieldID fid;
jint i;

printf("Starting the native method.\n");
cls = (*env)->GetObjectClass(env, obj);
fid = (*env)->GetFieldID(env, cls, "i", "I");

if(fid == 0) {
printf("Could not get field id.\n");
return;

}
i = (*env)->GetIntField(env, obj, fid);
printf("i = %d\n", i);
(*env)->SetIntField(env, obj, fid, 2*i);
printf("Ending the native method.\n");

}

Notice that this file includes jni.h, which contains interfacing information. This file is provided
by your Java compiler. The header file NativeDemo.h was created by javah earlier.

In this function, the GetObjectClass( ) method is used to obtain a C structure that has
information about the class NativeDemo. The GetFieldID( ) method returns a C structure
with information about the field named “i” for the class. GetIntField( ) retrieves the original
value of that field. SetIntField( ) stores an updated value in that field. (See the file jni.h for
additional methods that handle other types of data.)

After creating NativeDemo.c, you must compile it and create a DLL. To do this by using the
Microsoft C/C++ compiler, use the following command line. (You might need to specify the
path to jni.h and its subordinate file jni_md.h.)

Cl /LD NativeDemo.c

This produces a file called NativeDemo.dll. Once this is done, you can execute the Java
program, which will produce the following output:

This is ob.i before the native method: 10
Starting the native method.
i = 10
Ending the native method.
This is ob.i after the native method: 20
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Problems with Native Methods
Native methods seem to offer great promise, because they enable you to gain access to an
existing base of library routines, and they offer the possibility of faster run-time execution.
But native methods also introduce two significant problems:

• Potential security risk Because a native method executes actual machine code,
it can gain access to any part of the host system. That is, native code is not confined
to the Java execution environment. This could allow a virus infection, for example.
For this reason, applets cannot use native methods. Also, the loading of DLLs can
be restricted, and their loading is subject to the approval of the security manager.

• Loss of portability Because the native code is contained in a DLL, it must be
present on the machine that is executing the Java program. Further, because each
native method is CPU- and operating system–dependent, each DLL is inherently
nonportable. Thus, a Java application that uses native methods will be able to run
only on a machine for which a compatible DLL has been installed.

The use of native methods should be restricted, because they render your Java programs
nonportable and pose significant security risks.

Using assert
Another relatively new addition to Java is the keyword assert. It is used during program
development to create an assertion, which is a condition that should be true during the
execution of the program. For example, you might have a method that should always return
a positive integer value. You might test this by asserting that the return value is greater than
zero using an assert statement. At run time, if the condition actually is true, no other action
takes place. However, if the condition is false, then an AssertionError is thrown. Assertions
are often used during testing to verify that some expected condition is actually met. They are
not usually used for released code.

The assert keyword has two forms. The first is shown here:

assert condition;

Here, condition is an expression that must evaluate to a Boolean result. If the result is true,
then the assertion is true and no other action takes place. If the condition is false, then the
assertion fails and a default AssertionError object is thrown.

The second form of assert is shown here:

assert condition : expr;

In this version, expr is a value that is passed to the AssertionError constructor. This value is
converted to its string format and displayed if an assertion fails. Typically, you will specify
a string for expr, but any non-void expression is allowed as long as it defines a reasonable
string conversion.
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Here is an example that uses assert. It verifies that the return value of getnum( ) is positive.

// Demonstrate assert.
class AssertDemo {
static int val = 3;

// Return an integer.
static int getnum() {
return val--;

}

public static void main(String args[])
{
int n;

for(int i=0; i < 10; i++) {
n = getnum();

assert n > 0; // will fail when n is 0

System.out.println("n is " + n);
}

}
}

To enable assertion checking at run time, you must specify the -ea option. For example,
to enable assertions for AssertDemo, execute it using this line:

java -ea AssertDemo

After compiling and running as just described, the program creates the following output:

n is 3
n is 2
n is 1
Exception in thread "main" java.lang.AssertionError

at AssertDemo.main(AssertDemo.java:17)

In main( ), repeated calls are made to the method getnum( ), which returns an integer value.
The return value of getnum( ) is assigned to n and then tested using this assert statement:

assert n > 0; // will fail when n is 0

This statement will fail when n equals 0, which it will after the fourth call. When this happens,
an exception is thrown.



As explained, you can specify the message displayed when an assertion fails. For example,
if you substitute

assert n > 0 : "n is negative!";

for the assertion in the preceding program, then the following output will be generated:

n is 3
n is 2
n is 1
Exception in thread "main" java.lang.AssertionError: n is
negative!

at AssertDemo.main(AssertDemo.java:17)

One important point to understand about assertions is that you must not rely on them
to perform any action actually required by the program. The reason is that normally, released
code will be run with assertions disabled. For example, consider this variation of the preceding
program:

// A poor way to use assert!!!
class AssertDemo {
// get a random number generator
static int val = 3;

// Return an integer.
static int getnum() {
return val--;

}

public static void main(String args[])
{
int n = 0;

for(int i=0; i < 10; i++) {

assert (n = getnum()) > 0; // This is not a good idea!

System.out.println("n is " + n);
}

}
}

In this version of the program, the call to getnum( ) is moved inside the assert statement.
Although this works fine if assertions are enabled, it will cause a malfunction when assertions
are disabled, because the call to getnum( ) will never be executed! In fact, n must now be
initialized, because the compiler will recognize that it might not be assigned a value by the
assert statement.

Assertions are a good addition to Java because they streamline the type of error checking
that is common during development. For example, prior to assert, if you wanted to verify that
n was positive in the preceding program, you had to use a sequence of code similar to this:
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if(n < 0) {
System.out.println("n is negative!");
return; // or throw an exception

}

With assert, you need only one line of code. Furthermore, you don’t have to remove the
assert statements from your released code.

Assertion Enabling and Disabling Options
When executing code, you can disable assertions by using the -da option. You can enable or
disable a specific package by specifying its name after the -ea or -da option. For example, to
enable assertions in a package called MyPack, use

-ea:MyPack

To disable assertions in MyPack, use

-da:MyPack

To enable or disable all subpackages of a package, follow the package name with three dots.
For example,

-ea:MyPack...

You can also specify a class with the -ea or -da option. For example, this enables
AssertDemo individually:

-ea:AssertDemo

Static Import
JDK 5 added a new feature to Java called static import that expands the capabilities of the
import keyword. By following import with the keyword static, an import statement can
be used to import the static members of a class or interface. When using static import, it is
possible to refer to static members directly by their names, without having to qualify them
with the name of their class. This simplifies and shortens the syntax required to use a static
member.

To understand the usefulness of static import, let’s begin with an example that does
not use it. The following program computes the hypotenuse of a right triangle. It uses two
static methods from Java’s built-in math class Math, which is part of java.lang. The first is
Math.pow( ), which returns a value raised to a specified power. The second is Math.sqrt( ),
which returns the square root of its argument.

// Compute the hypotenuse of a right triangle.
class Hypot {
public static void main(String args[]) {
double side1, side2;
double hypot;
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side1 = 3.0;
side2 = 4.0;

// Notice how sqrt() and pow() must be qualified by
// their class name, which is Math.
hypot = Math.sqrt(Math.pow(side1, 2) +

Math.pow(side2, 2));

System.out.println("Given sides of lengths " +
side1 + " and " + side2 +
" the hypotenuse is " +
hypot);

}
}

Because pow( ) and sqrt( ) are static methods, they must be called through the use of
their class’ name, Math. This results in a somewhat unwieldy hypotenuse calculation:

hypot = Math.sqrt(Math.pow(side1, 2) +
Math.pow(side2, 2));

As this simple example illustrates, having to specify the class name each time pow( ) or
sqrt( ) (or any of Java’s other math methods, such as sin( ), cos( ), and tan( )) is used can
grow tedious.

You can eliminate the tedium of specifying the class name through the use of static
import, as shown in the following version of the preceding program:

// Use static import to bring sqrt() and pow() into view.
import static java.lang.Math.sqrt;
import static java.lang.Math.pow;

// Compute the hypotenuse of a right triangle.
class Hypot {
public static void main(String args[]) {
double side1, side2;
double hypot;

side1 = 3.0;
side2 = 4.0;

// Here, sqrt() and pow() can be called by themselves,
// without their class name.
hypot = sqrt(pow(side1, 2) + pow(side2, 2));

System.out.println("Given sides of lengths " +
side1 + " and " + side2 +
" the hypotenuse is " +
hypot);

}
}
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In this version, the names sqrt and pow are brought into view by these static import
statements:

import static java.lang.Math.sqrt;
import static java.lang.Math.pow;

After these statements, it is no longer necessary to qualify sqrt( ) or pow( ) with their class name.
Therefore, the hypotenuse calculation can more conveniently be specified, as shown here:

hypot = sqrt(pow(side1, 2) + pow(side2, 2));

As you can see, this form is considerably more readable.
There are two general forms of the import static statement. The first, which is used by

the preceding example, brings into view a single name. Its general form is shown here:

import static pkg.type-name.static-member-name;

Here, type-name is the name of a class or interface that contains the desired static member. Its full
package name is specified by pkg. The name of the member is specified by static-member-name.

The second form of static import imports all static members of a given class or interface.
Its general form is shown here:

import static pkg.type-name.*;

If you will be using many static methods or fields defined by a class, then this form lets you
bring them into view without having to specify each individually. Therefore, the preceding
program could have used this single import statement to bring both pow( ) and sqrt( ) (and
all other static members of Math) into view:

import static java.lang.Math.*;

Of course, static import is not limited just to the Math class or just to methods. For example,
this brings the static field System.out into view:

import static java.lang.System.out;

After this statement, you can output to the console without having to qualify out with
System, as shown here:

out.println("After importing System.out, you can use out directly.");

Whether importing System.out as just shown is a good idea is subject to debate. Although
it does shorten the statement, it is no longer instantly clear to anyone reading the program
that the out being referred to is System.out.

One other point: in addition to importing the static members of classes and interfaces
defined by the Java API, you can also use static import to import the static members of classes
and interfaces that you create.
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As convenient as static import can be, it is important not to abuse it. Remember, the reason
that Java organizes its libraries into packages is to avoid namespace collisions. When you
import static members, you are bringing those members into the global namespace. Thus,
you are increasing the potential for namespace conflicts and for the inadvertent hiding of
other names. If you are using a static member once or twice in the program, it’s best not to
import it. Also, some static names, such as System.out, are so recognizable that you might
not want to import them. Static import is designed for those situations in which you are using
a static member repeatedly, such as when performing a series of mathematical computations.
In essence, you should use, but not abuse, this feature.

Invoking Overloaded Constructors Through this( )
When working with overloaded constructors, it is sometimes useful for one constructor to
invoke another. In Java, this is accomplished by using another form of the this keyword.
The general form is shown here:

this(arg-list)

When this( ) is executed, the overloaded constructor that matches the parameter list
specified by arg-list is executed first. Then, if there are any statements inside the original
constructor, they are executed. The call to this( ) must be the first statement within the
constructor.

To understand how this( ) can be used, let’s work through a short example. First,
consider the following class that does not use this( ):

class MyClass {
int a;
int b;

// initialize a and b individually
MyClass(int i, int j) {
a = i;
b = j;

}

// initialize a and b to the same value
MyClass(int i) {
a = i;
b = i;

}

// give a and b default values of 0
MyClass( ) {
a = 0;
b = 0;

}
}

312 P a r t I : T h e J a v a L a n g u a g e



C h a p t e r 1 3 : I / O , A p p l e t s , a n d O t h e r T o p i c s 313

This class contains three constructors, each of which initializes the values of a and b. The
first is passed individual values for a and b. The second is passed just one value, which is
assigned to both a and b. The third gives a and b default values of zero.

By using this( ), it is possible to rewrite MyClass as shown here:

class MyClass {
int a;
int b;

// initialize a and b individually
MyClass(int i, int j) {
a = i;
b = j;

}

// initialize a and b to the same value
MyClass(int i) {
this(i, i); // invokes MyClass(i, i)

}

// give a and b default values of 0
MyClass( ) {
this(0); // invokes MyClass(0)

}
}

In this version of MyClass, the only constructor that actually assigns values to the a and
b fields is MyClass(int, int). The other two constructors simply invoke that constructor
(either directly or indirectly) through this( ). For example, consider what happens when this
statement executes:

MyClass mc = new MyClass(8);

The call to MyClass(8) causes this(8, 8) to be executed, which translates into a call to
MyClass(8, 8), because this is the version of the MyClass constructor whose parameter list
matches the arguments passed via this( ). Now, consider the following statement, which
uses the default constructor:

MyClass mc2 = new MyClass();

In this case, this(0) is called. This causes MyClass(0) to be invoked because it is the
constructor with the matching parameter list. Of course, MyClass(0) then calls MyClass(0,
0) as just described.

One reason why invoking overloaded constructors through this( ) can be useful is that it
can prevent the unnecessary duplication of code. In many cases, reducing duplicate code
decreases the time it takes to load your class because often the object code is smaller. This is
especially important for programs delivered via the Internet in which load times are an
issue. Using this( ) can also help structure your code when constructors contain a large
amount of duplicate code.



However, you need to be careful. Constructors that call this( ) will execute a bit slower
than those that contain all of their initialization code inline. This is because the call and
return mechanism used when the second constructor is invoked adds overhead. If your
class will be used to create only a handful of objects, or if the constructors in the class that
call this( ) will be seldom used, then this decrease in run-time performance is probably
insignificant. However, if your class will be used to create a large number of objects (on the
order of thousands) during program execution, then the negative impact of the increased
overhead could be meaningful. Because object creation affects all users of your class, there
will be cases in which you must carefully weigh the benefits of faster load time against the
increased time it takes to create an object.

Here is another consideration: for very short constructors, such as those used by MyClass,
there is often little difference in the size of the object code whether this( ) is used or not.
(Actually, there are cases in which no reduction in the size of the object code is achieved.)
This is because the bytecode that sets up and returns from the call to this( ) adds instructions
to the object file. Therefore, in these types of situations, even though duplicate code is
eliminated, using this( ) will not obtain significant savings in terms of load time. However,
the added cost in terms of overhead to each object’s construction will still be incurred.
Therefore, this( ) is most applicable to constructors that contain large amounts of initialization
code, not for those that simply set the value of a handful of fields.

There are two restrictions you need to keep in mind when using this( ). First, you cannot
use any instance variable of the constructor’s class in a call to this( ). Second, you cannot use
super( ) and this( ) in the same constructor because each must be the first statement in the
constructor.
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14
Generics

Since the original 1.0 release in 1995, many new features have been added to Java. The one
that has had the most profound impact is generics. Introduced by JDK 5, generics changed
Java in two important ways. First, it added a new syntactical element to the language.

Second, it caused changes to many of the classes and methods in the core API. Because generics
represented such a large change to the language, some programmers were reluctant to adopt its
use. However, with the release of JDK 6, generics can no longer be ignored. Simply put, if you
will be programming in Java SE 6, you will be using generics. Fortunately, generics are not
difficult to use, and they provide significant benefits for the Java programmer.

Through the use of generics, it is possible to create classes, interfaces, and methods that
will work in a type-safe manner with various kinds of data. Many algorithms are logically the
same no matter what type of data they are being applied to. For example, the mechanism that
supports a stack is the same whether that stack is storing items of type Integer, String, Object,
or Thread. With generics, you can define an algorithm once, independently of any specific
type of data, and then apply that algorithm to a wide variety of data types without any additional
effort. The expressive power generics add to the language fundamentally changes the way
that Java code is written.

Perhaps the one feature of Java that has been most significantly affected by generics is
the Collections Framework. The Collections Framework is part of the Java API and is described
in detail in Chapter 17, but a brief mention is useful now. A collection is a group of objects.
The Collections Framework defines several classes, such as lists and maps, that manage
collections. The collection classes have always been able to work with any type of object.
The benefit that generics add is that the collection classes can now be used with complete
type safety. Thus, in addition to providing a powerful, new language element, generics also
enabled an existing feature to be substantially improved. This is why generics represent such
an important addition to Java.

This chapter describes the syntax, theory, and use of generics. It also shows how generics
provide type safety for some previously difficult cases. Once you have completed this chapter,
you will want to examine Chapter 17, which covers the Collections Framework. There you
will find many examples of generics at work.

REMEMBEREMEMBER Generics were added by JDK 5. Source code using generics cannot be compiled by
earlier versions of javac.

3 1 5
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What Are Generics?
At its core, the term generics means parameterized types. Parameterized types are important
because they enable you to create classes, interfaces, and methods in which the type of data
upon which they operate is specified as a parameter. Using generics, it is possible to create
a single class, for example, that automatically works with different types of data. A class,
interface, or method that operates on a parameterized type is called generic, as in generic class
or generic method.

It is important to understand that Java has always given you the ability to create generalized
classes, interfaces, and methods by operating through references of type Object. Because Object
is the superclass of all other classes, an Object reference can refer to any type object. Thus, in
pre-generics code, generalized classes, interfaces, and methods used Object references to
operate on various types of objects. The problem was that they could not do so with type safety.

Generics add the type safety that was lacking. They also streamline the process, because
it is no longer necessary to explicitly employ casts to translate between Object and the type
of data that is actually being operated upon. With generics, all casts are automatic and implicit.
Thus, generics expand your ability to reuse code and let you do so safely and easily.

NOTEOTE A Warning to C++ Programmers: Although generics are similar to templates in C++, they
are not the same. There are some fundamental differences between the two approaches to generic
types. If you have a background in C++, it is important not to jump to conclusions about how
generics work in Java.

A Simple Generics Example
Let’s begin with a simple example of a generic class. The following program defines two
classes. The first is the generic class Gen, and the second is GenDemo, which uses Gen.

// A simple generic class.
// Here, T is a type parameter that
// will be replaced by a real type
// when an object of type Gen is created.
class Gen<T> {
T ob; // declare an object of type T

// Pass the constructor a reference to
// an object of type T.
Gen(T o) {
ob = o;

}

// Return ob.
T getob() {
return ob;

}

// Show type of T.
void showType() {
System.out.println("Type of T is " +

ob.getClass().getName());
}

}
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// Demonstrate the generic class.
class GenDemo {
public static void main(String args[]) {
// Create a Gen reference for Integers.
Gen<Integer> iOb;

// Create a Gen<Integer> object and assign its
// reference to iOb.  Notice the use of autoboxing
// to encapsulate the value 88 within an Integer object.
iOb = new Gen<Integer>(88);

// Show the type of data used by iOb.
iOb.showType();

// Get the value in iOb. Notice that
// no cast is needed.
int v = iOb.getob();
System.out.println("value: " + v);

System.out.println();

// Create a Gen object for Strings.
Gen<String> strOb = new Gen<String>("Generics Test");

// Show the type of data used by strOb.
strOb.showType();

// Get the value of strOb. Again, notice
// that no cast is needed.
String str = strOb.getob();
System.out.println("value: " + str);

}
}

The output produced by the program is shown here:

Type of T is java.lang.Integer
value: 88

Type of T is java.lang.String
value: Generics Test

Let’s examine this program carefully.
First, notice how Gen is declared by the following line:

class Gen<T> {

Here, T is the name of a type parameter. This name is used as a placeholder for the actual
type that will be passed to Gen when an object is created. Thus, T is used within Gen whenever
the type parameter is needed. Notice that T is contained within < >. This syntax can be
generalized. Whenever a type parameter is being declared, it is specified within angle
brackets. Because Gen uses a type parameter, Gen is a generic class, which is also called a
parameterized type.



Next, T is used to declare an object called ob, as shown here:

T ob; // declare an object of type T

As explained, T is a placeholder for the actual type that will be specified when a Gen object
is created. Thus, ob will be an object of the type passed to T. For example, if type String is
passed to T, then in that instance, ob will be of type String.

Now consider Gen’s constructor:

Gen(T o) {
ob = o;

}

Notice that its parameter, o, is of type T. This means that the actual type of o is determined
by the type passed to T when a Gen object is created. Also, because both the parameter o
and the member variable ob are of type T, they will both be of the same actual type when a
Gen object is created.

The type parameter T can also be used to specify the return type of a method, as is the
case with the getob( ) method, shown here:

T getob() {
return ob;

}

Because ob is also of type T, its type is compatible with the return type specified by getob( ).
The showType( ) method displays the type of T by calling getName( ) on the Class object

returned by the call to getClass( ) on ob. The getClass( ) method is defined by Object and is
thus a member of all class types. It returns a Class object that corresponds to the type of the
class of the object on which it is called. Class defines the getName( ) method, which returns
a string representation of the class name.

The GenDemo class demonstrates the generic Gen class. It first creates a version of Gen
for integers, as shown here:

Gen<Integer> iOb;

Look closely at this declaration. First, notice that the type Integer is specified within the
angle brackets after Gen. In this case, Integer is a type argument that is passed to Gen’s type
parameter, T. This effectively creates a version of Gen in which all references to T are translated
into references to Integer. Thus, for this declaration, ob is of type Integer, and the return type
of getob( ) is of type Integer.

Before moving on, it’s necessary to state that the Java compiler does not actually create
different versions of Gen, or of any other generic class. Although it’s helpful to think in
these terms, it is not what actually happens. Instead, the compiler removes all generic type
information, substituting the necessary casts, to make your code behave as if a specific version
of Gen were created. Thus, there is really only one version of Gen that actually exists in your
program. The process of removing generic type information is called erasure, and we will
return to this topic later in this chapter.
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The next line assigns to iOb a reference to an instance of an Integer version of the Gen
class:

iOb = new Gen<Integer>(88);

Notice that when the Gen constructor is called, the type argument Integer is also specified.
This is necessary because the type of the object (in this case iOb) to which the reference is
being assigned is of type Gen<Integer>. Thus, the reference returned by new must also be
of type Gen<Integer>. If it isn’t, a compile-time error will result. For example, the following
assignment will cause a compile-time error:

iOb = new Gen<Double>(88.0); // Error!

Because iOb is of type Gen<Integer>, it can’t be used to refer to an object of Gen<Double>.
This type checking is one of the main benefits of generics because it ensures type safety.

As the comments in the program state, the assignment

iOb = new Gen<Integer>(88);

makes use of autoboxing to encapsulate the value 88, which is an int, into an Integer. This
works because Gen<Integer> creates a constructor that takes an Integer argument. Because
an Integer is expected, Java will automatically box 88 inside one. Of course, the assignment
could also have been written explicitly, like this:

iOb = new Gen<Integer>(new Integer(88));

However, there would be no benefit to using this version.
The program then displays the type of ob within iOb, which is Integer. Next, the program

obtains the value of ob by use of the following line:

int v = iOb.getob();

Because the return type of getob( ) is T, which was replaced by Integer when iOb was
declared, the return type of getob( ) is also Integer, which unboxes into int when assigned
to v (which is an int). Thus, there is no need to cast the return type of getob( ) to Integer.
Of course, it’s not necessary to use the auto-unboxing feature. The preceding line could
have been written like this, too:

int v = iOb.getob().intValue();

However, the auto-unboxing feature makes the code more compact.
Next, GenDemo declares an object of type Gen<String>:

Gen<String> strOb = new Gen<String>("Generics Test");

Because the type argument is String, String is substituted for T inside Gen. This creates
(conceptually) a String version of Gen, as the remaining lines in the program demonstrate.
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Generics Work Only with Objects
When declaring an instance of a generic type, the type argument passed to the type parameter
must be a class type. You cannot use a primitive type, such as int or char. For example, with
Gen, it is possible to pass any class type to T, but you cannot pass a primitive type to a type
parameter. Therefore, the following declaration is illegal:

Gen<int> strOb = new Gen<int>(53); // Error, can't use primitive type

Of course, not being able to specify a primitive type is not a serious restriction because you
can use the type wrappers (as the preceding example did) to encapsulate a primitive type.
Further, Java’s autoboxing and auto-unboxing mechanism makes the use of the type wrapper
transparent.

Generic Types Differ Based on Their Type Arguments
A key point to understand about generic types is that a reference of one specific version of a
generic type is not type compatible with another version of the same generic type. For example,
assuming the program just shown, the following line of code is in error and will not compile:

iOb = strOb; // Wrong!

Even though both iOb and strOb are of type Gen<T>, they are references to different types
because their type parameters differ. This is part of the way that generics add type safety and
prevent errors.

How Generics Improve Type Safety
At this point, you might be asking yourself the following question: Given that the same
functionality found in the generic Gen class can be achieved without generics, by simply
specifying Object as the data type and employing the proper casts, what is the benefit of
making Gen generic? The answer is that generics automatically ensure the type safety of all
operations involving Gen. In the process, they eliminate the need for you to enter casts and
to type-check code by hand.

To understand the benefits of generics, first consider the following program that creates
a non-generic equivalent of Gen:

// NonGen is functionally equivalent to Gen
// but does not use generics.
class NonGen {
Object ob; // ob is now of type Object

// Pass the constructor a reference to
// an object of type Object
NonGen(Object o) {
ob = o;

}

// Return type Object.
Object getob() {
return ob;
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}

// Show type of ob.
void showType() {
System.out.println("Type of ob is " +

ob.getClass().getName());
}

}

// Demonstrate the non-generic class.
class NonGenDemo {
public static void main(String args[]) {
NonGen iOb;

// Create NonGen Object and store
// an Integer in it. Autoboxing still occurs.
iOb = new NonGen(88);

// Show the type of data used by iOb.
iOb.showType();

// Get the value of iOb.
// This time, a cast is necessary.
int v = (Integer) iOb.getob();
System.out.println("value: " + v);

System.out.println();

// Create another NonGen object and
// store a String in it.
NonGen strOb = new NonGen("Non-Generics Test");

// Show the type of data used by strOb.
strOb.showType();

// Get the value of strOb.
// Again, notice that a cast is necessary.
String str = (String) strOb.getob();
System.out.println("value: " + str);

// This compiles, but is conceptually wrong!
iOb = strOb;
v = (Integer) iOb.getob(); // run-time error!

}
}

There are several things of interest in this version. First, notice that NonGen replaces all
uses of T with Object. This makes NonGen able to store any type of object, as can the generic
version. However, it also prevents the Java compiler from having any real knowledge about
the type of data actually stored in NonGen, which is bad for two reasons. First, explicit casts
must be employed to retrieve the stored data. Second, many kinds of type mismatch errors
cannot be found until run time. Let’s look closely at each problem.
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Notice this line:

int v = (Integer) iOb.getob();

Because the return type of getob( ) is Object, the cast to Integer is necessary to enable that
value to be auto-unboxed and stored in v. If you remove the cast, the program will not compile.
With the generic version, this cast was implicit. In the non-generic version, the cast must be
explicit. This is not only an inconvenience, but also a potential source of error.

Now, consider the following sequence from near the end of the program:

// This compiles, but is conceptually wrong!
iOb = strOb;
v = (Integer) iOb.getob(); // run-time error!

Here, strOb is assigned to iOb. However, strOb refers to an object that contains a string, not
an integer. This assignment is syntactically valid because all NonGen references are the same,
and any NonGen reference can refer to any other NonGen object. However, the statement is
semantically wrong, as the next line shows. Here, the return type of getob( ) is cast to Integer,
and then an attempt is made to assign this value to v. The trouble is that iOb now refers to
an object that stores a String, not an Integer. Unfortunately, without the use of generics, the
Java compiler has no way to know this. Instead, a run-time exception occurs when the cast
to Integer is attempted. As you know, it is extremely bad to have run-time exceptions occur
in your code!

The preceding sequence can’t occur when generics are used. If this sequence were
attempted in the generic version of the program, the compiler would catch it and report an
error, thus preventing a serious bug that results in a run-time exception. The ability to create
type-safe code in which type-mismatch errors are caught at compile time is a key advantage
of generics. Although using Object references to create “generic” code has always been
possible, that code was not type safe, and its misuse could result in run-time exceptions.
Generics prevent this from occurring. In essence, through generics, what were once
run-time errors have become compile-time errors. This is a major advantage.

A Generic Class with Two Type Parameters
You can declare more than one type parameter in a generic type. To specify two or more
type parameters, simply use a comma-separated list. For example, the following TwoGen
class is a variation of the Gen class that has two type parameters:

// A simple generic class with two type
// parameters: T and V.
class TwoGen<T, V> {
T ob1;
V ob2;

// Pass the constructor a reference to
// an object of type T and an object of type V.
TwoGen(T o1, V o2) {
ob1 = o1;
ob2 = o2;

}
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// Show types of T and V.
void showTypes() {
System.out.println("Type of T is " +

ob1.getClass().getName());

System.out.println("Type of V is " +
ob2.getClass().getName());

}

T getob1() {
return ob1;

}

V getob2() {
return ob2;

}
}

// Demonstrate TwoGen.
class SimpGen {
public static void main(String args[]) {

TwoGen<Integer, String> tgObj =
new TwoGen<Integer, String>(88, "Generics");

// Show the types.
tgObj.showTypes();

// Obtain and show values.
int v = tgObj.getob1();
System.out.println("value: " + v);

String str = tgObj.getob2();
System.out.println("value: " + str);

}
}

The output from this program is shown here:

Type of T is java.lang.Integer
Type of V is java.lang.String
value: 88
value: Generics

Notice how TwoGen is declared:

class TwoGen<T, V> {

It specifies two type parameters: T and V, separated by a comma. Because it has two type
parameters, two type arguments must be passed to TwoGen when an object is created, as
shown next:

TwoGen<Integer, String> tgObj =
new TwoGen<Integer, String>(88, "Generics");
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In this case, Integer is substituted for T, and String is substituted for V.
Although the two type arguments differ in this example, it is possible for both types to

be the same. For example, the following line of code is valid:

TwoGen<String, String> x = new TwoGen<String, String>("A", "B");

In this case, both T and V would be of type String. Of course, if the type arguments were
always the same, then two type parameters would be unnecessary.

The General Form of a Generic Class
The generics syntax shown in the preceding examples can be generalized. Here is the syntax
for declaring a generic class:

class class-name<type-param-list> { // ...

Here is the syntax for declaring a reference to a generic class:

class-name<type-arg-list> var-name =
new class-name<type-arg-list>(cons-arg-list);

Bounded Types
In the preceding examples, the type parameters could be replaced by any class type. This is
fine for many purposes, but sometimes it is useful to limit the types that can be passed to a
type parameter. For example, assume that you want to create a generic class that contains a
method that returns the average of an array of numbers. Furthermore, you want to use the
class to obtain the average of an array of any type of number, including integers, floats, and
doubles. Thus, you want to specify the type of the numbers generically, using a type parameter.
To create such a class, you might try something like this:

// Stats attempts (unsuccessfully) to
// create a generic class that can compute
// the average of an array of numbers of
// any given type.
//
// The class contains an error!
class Stats<T> {
T[] nums; // nums is an array of type T

// Pass the constructor a reference to
// an array of type T.
Stats(T[] o) {
nums = o;

}

// Return type double in all cases.
double average() {
double sum = 0.0;



for(int i=0; i < nums.length; i++)
sum += nums[i].doubleValue(); // Error!!!

return sum / nums.length;
}

}

In Stats, the average( ) method attempts to obtain the double version of each number in
the nums array by calling doubleValue( ). Because all numeric classes, such as Integer and
Double, are subclasses of Number, and Number defines the doubleValue( ) method, this
method is available to all numeric wrapper classes. The trouble is that the compiler has no
way to know that you are intending to create Stats objects using only numeric types. Thus,
when you try to compile Stats, an error is reported that indicates that the doubleValue( )
method is unknown. To solve this problem, you need some way to tell the compiler that
you intend to pass only numeric types to T. Furthermore, you need some way to ensure that
only numeric types are actually passed.

To handle such situations, Java provides bounded types. When specifying a type parameter,
you can create an upper bound that declares the superclass from which all type arguments
must be derived. This is accomplished through the use of an extends clause when specifying
the type parameter, as shown here:

<T extends superclass>

This specifies that T can only be replaced by superclass, or subclasses of superclass. Thus,
superclass defines an inclusive, upper limit.

You can use an upper bound to fix the Stats class shown earlier by specifying Number
as an upper bound, as shown here:

// In this version of Stats, the type argument for
// T must be either Number, or a class derived
// from Number.
class Stats<T extends Number> {
T[] nums; // array of Number or subclass

// Pass the constructor a reference to
// an array of type Number or subclass.
Stats(T[] o) {
nums = o;

}

// Return type double in all cases.
double average() {
double sum = 0.0;

for(int i=0; i < nums.length; i++)
sum += nums[i].doubleValue();

return sum / nums.length;
}

}
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// Demonstrate Stats.
class BoundsDemo {
public static void main(String args[]) {

Integer inums[] = { 1, 2, 3, 4, 5 };
Stats<Integer> iob = new Stats<Integer>(inums);
double v = iob.average();
System.out.println("iob average is " + v);

Double dnums[] = { 1.1, 2.2, 3.3, 4.4, 5.5 };
Stats<Double> dob = new Stats<Double>(dnums);
double w = dob.average();
System.out.println("dob average is " + w);

// This won't compile because String is not a
// subclass of Number.

//    String strs[] = { "1", "2", "3", "4", "5" };
//    Stats<String> strob = new Stats<String>(strs);

//    double x = strob.average();
//    System.out.println("strob average is " + v);

}
}

The output is shown here:

Average is 3.0
Average is 3.3

Notice how Stats is now declared by this line:

class Stats<T extends Number> {

Because the type T is now bounded by Number, the Java compiler knows that all objects of
type T can call doubleValue( ) because it is a method declared by Number. This is, by itself,
a major advantage. However, as an added bonus, the bounding of T also prevents nonnumeric
Stats objects from being created. For example, if you try removing the comments from the
lines at the end of the program, and then try recompiling, you will receive compile-time
errors because String is not a subclass of Number.

In addition to using a class type as a bound, you can also use an interface type. In fact,
you can specify multiple interfaces as bounds. Furthermore, a bound can include both a
class type and one or more interfaces. In this case, the class type must be specified first.
When a bound includes an interface type, only type arguments that implement that
interface are legal. When specifying a bound that has a class and an interface, or multiple
interfaces, use the & operator to connect them. For example,

class Gen<T extends MyClass & MyInterface> { // ...



C h a p t e r 1 4 : G e n e r i c s 327

Here, T is bounded by a class called MyClass and an interface called MyInterface. Thus,
any type argument passed to T must be a subclass of MyClass and implement MyInterface.

Using Wildcard Arguments
As useful as type safety is, sometimes it can get in the way of perfectly acceptable constructs.
For example, given the Stats class shown at the end of the preceding section, assume that
you want to add a method called sameAvg( ) that determines if two Stats objects contain
arrays that yield the same average, no matter what type of numeric data each object holds.
For example, if one object contains the double values 1.0, 2.0, and 3.0, and the other object
contains the integer values 2, 1, and 3, then the averages will be the same. One way to
implement sameAvg( ) is to pass it a Stats argument, and then compare the average of that
argument against the invoking object, returning true only if the averages are the same. For
example, you want to be able to call sameAvg( ), as shown here:

Integer inums[] = { 1, 2, 3, 4, 5 };
Double dnums[] = { 1.1, 2.2, 3.3, 4.4, 5.5 };

Stats<Integer> iob = new Stats<Integer>(inums);
Stats<Double> dob = new Stats<Double>(dnums);

if(iob.sameAvg(dob))
System.out.println("Averages are the same.");

else
System.out.println("Averages differ.");

At first, creating sameAvg( ) seems like an easy problem. Because Stats is generic and its
average( ) method can work on any type of Stats object, it seems that creating sameAvg( )
would be straightforward. Unfortunately, trouble starts as soon as you try to declare a
parameter of type Stats. Because Stats is a parameterized type, what do you specify for
Stats’ type parameter when you declare a parameter of that type?

At first, you might think of a solution like this, in which T is used as the type parameter:

// This won't work!
// Determine if two averages are the same.
boolean sameAvg(Stats<T> ob) {
if(average() == ob.average())
return true;

return false;
}

The trouble with this attempt is that it will work only with other Stats objects whose type is
the same as the invoking object. For example, if the invoking object is of type Stats<Integer>,
then the parameter ob must also be of type Stats<Integer>. It can’t be used to compare the
average of an object of type Stats<Double> with the average of an object of type Stats<Short>,
for example. Therefore, this approach won’t work except in a very narrow context and does
not yield a general (that is, generic) solution.
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To create a generic sameAvg( ) method, you must use another feature of Java generics:
the wildcard argument. The wildcard argument is specified by the ?, and it represents an
unknown type. Using a wildcard, here is one way to write the sameAvg( ) method:

// Determine if two averages are the same.
// Notice the use of the wildcard.
boolean sameAvg(Stats<?> ob) {
if(average() == ob.average())
return true;

return false;
}

Here, Stats<?> matches any Stats object, allowing any two Stats objects to have their
averages compared. The following program demonstrates this:

// Use a wildcard.
class Stats<T extends Number> {
T[] nums; // array of Number or subclass

// Pass the constructor a reference to
// an array of type Number or subclass.
Stats(T[] o) {
nums = o;

}

// Return type double in all cases.
double average() {
double sum = 0.0;

for(int i=0; i < nums.length; i++)
sum += nums[i].doubleValue();

return sum / nums.length;
}

// Determine if two averages are the same.
// Notice the use of the wildcard.
boolean sameAvg(Stats<?> ob) {
if(average() == ob.average())
return true;

return false;
}

}

// Demonstrate wildcard.
class WildcardDemo {
public static void main(String args[]) {
Integer inums[] = { 1, 2, 3, 4, 5 };
Stats<Integer> iob = new Stats<Integer>(inums);
double v = iob.average();
System.out.println("iob average is " + v);



C h a p t e r 1 4 : G e n e r i c s 329

Double dnums[] = { 1.1, 2.2, 3.3, 4.4, 5.5 };
Stats<Double> dob = new Stats<Double>(dnums);
double w = dob.average();
System.out.println("dob average is " + w);

Float fnums[] = { 1.0F, 2.0F, 3.0F, 4.0F, 5.0F };
Stats<Float> fob = new Stats<Float>(fnums);
double x = fob.average();
System.out.println("fob average is " + x);

// See which arrays have same average.
System.out.print("Averages of iob and dob ");
if(iob.sameAvg(dob))
System.out.println("are the same.");

else
System.out.println("differ.");

System.out.print("Averages of iob and fob ");
if(iob.sameAvg(fob))
System.out.println("are the same.");

else
System.out.println("differ.");

}
}

The output is shown here:

iob average is 3.0
dob average is 3.3
fob average is 3.0
Averages of iob and dob differ.
Averages of iob and fob are the same.

One last point: It is important to understand that the wildcard does not affect what type
of Stats objects can be created. This is governed by the extends clause in the Stats declaration.
The wildcard simply matches any valid Stats object.

Bounded Wildcards
Wildcard arguments can be bounded in much the same way that a type parameter can be
bounded. A bounded wildcard is especially important when you are creating a generic type
that will operate on a class hierarchy. To understand why, let’s work through an example.
Consider the following hierarchy of classes that encapsulate coordinates:

// Two-dimensional coordinates.
class TwoD {
int x, y;

TwoD(int a, int b) {
x = a;
y = b;

}
}



// Three-dimensional coordinates.
class ThreeD extends TwoD {
int z;

ThreeD(int a, int b, int c) {
super(a, b);
z = c;

}
}

// Four-dimensional coordinates.
class FourD extends ThreeD {
int t;

FourD(int a, int b, int c, int d) {
super(a, b, c);
t = d;

}
}

At the top of the hierarchy is TwoD, which encapsulates a two-dimensional, XY coordinate.
TwoD is inherited by ThreeD, which adds a third dimension, creating an XYZ coordinate.
ThreeD is inherited by FourD, which adds a fourth dimension (time), yielding a
four-dimensional coordinate.

Shown next is a generic class called Coords, which stores an array of coordinates:

// This class holds an array of coordinate objects.
class Coords<T extends TwoD> {
T[] coords;

Coords(T[] o) { coords = o; }
}

Notice that Coords specifies a type parameter bounded by TwoD. This means that any
array stored in a Coords object will contain objects of type TwoD or one of its subclasses.

Now, assume that you want to write a method that displays the X and Y coordinates
for each element in the coords array of a Coords object. Because all types of Coords objects
have at least two coordinates (X and Y), this is easy to do using a wildcard, as shown here:

static void showXY(Coords<?> c) {
System.out.println("X Y Coordinates:");
for(int i=0; i < c.coords.length; i++)
System.out.println(c.coords[i].x + " " +

c.coords[i].y);
System.out.println();

}

Because Coords is a bounded generic type that specifies TwoD as an upper bound, all
objects that can be used to create a Coords object will be arrays of type TwoD, or of classes
derived from TwoD. Thus, showXY( ) can display the contents of any Coords object.
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However, what if you want to create a method that displays the X, Y, and Z coordinates
of a ThreeD or FourD object? The trouble is that not all Coords objects will have three
coordinates, because a Coords<TwoD> object will only have X and Y. Therefore, how do
you write a method that displays the X, Y, and Z coordinates for Coords<ThreeD> and
Coords<FourD> objects, while preventing that method from being used with Coords<TwoD>
objects? The answer is the bounded wildcard argument.

A bounded wildcard specifies either an upper bound or a lower bound for the type
argument. This enables you to restrict the types of objects upon which a method will operate.
The most common bounded wildcard is the upper bound, which is created using an extends
clause in much the same way it is used to create a bounded type.

Using a bounded wildcard, it is easy to create a method that displays the X, Y, and Z
coordinates of a Coords object, if that object actually has those three coordinates. For example,
the following showXYZ( ) method shows the X, Y, and Z coordinates of the elements stored
in a Coords object, if those elements are actually of type ThreeD (or are derived from ThreeD):

static void showXYZ(Coords<? extends ThreeD> c) {
System.out.println("X Y Z Coordinates:");
for(int i=0; i < c.coords.length; i++)
System.out.println(c.coords[i].x + " " +

c.coords[i].y + " " +
c.coords[i].z);

System.out.println();
}

Notice that an extends clause has been added to the wildcard in the declaration of
parameter c. It states that the ? can match any type as long as it is ThreeD, or a class
derived from ThreeD. Thus, the extends clause establishes an upper bound that the ? can
match. Because of this bound, showXYZ( ) can be called with references to objects of type
Coords<ThreeD> or Coords<FourD>, but not with a reference of type Coords<TwoD>.
Attempting to call showXZY( ) with a Coords<TwoD> reference results in a compile-time
error, thus ensuring type safety.

Here is an entire program that demonstrates the actions of a bounded wildcard argument:

// Bounded Wildcard arguments.

// Two-dimensional coordinates.
class TwoD {
int x, y;

TwoD(int a, int b) {
x = a;
y = b;

}
}

// Three-dimensional coordinates.
class ThreeD extends TwoD {
int z;

ThreeD(int a, int b, int c) {
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super(a, b);
z = c;

}
}

// Four-dimensional coordinates.
class FourD extends ThreeD {
int t;

FourD(int a, int b, int c, int d) {
super(a, b, c);
t = d;

}
}

// This class holds an array of coordinate objects.
class Coords<T extends TwoD> {
T[] coords;

Coords(T[] o) { coords = o; }
}

// Demonstrate a bounded wildcard.
class BoundedWildcard {
static void showXY(Coords<?> c) {
System.out.println("X Y Coordinates:");
for(int i=0; i < c.coords.length; i++)
System.out.println(c.coords[i].x + " " +

c.coords[i].y);
System.out.println();

}

static void showXYZ(Coords<? extends ThreeD> c) {
System.out.println("X Y Z Coordinates:");
for(int i=0; i < c.coords.length; i++)
System.out.println(c.coords[i].x + " " +

c.coords[i].y + " " +
c.coords[i].z);

System.out.println();
}

static void showAll(Coords<? extends FourD> c) {
System.out.println("X Y Z T Coordinates:");
for(int i=0; i < c.coords.length; i++)
System.out.println(c.coords[i].x + " " +

c.coords[i].y + " " +
c.coords[i].z + " " +
c.coords[i].t);

System.out.println();
}

public static void main(String args[]) {
TwoD td[] = {
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new TwoD(0, 0),
new TwoD(7, 9),
new TwoD(18, 4),
new TwoD(-1, -23)

};

Coords<TwoD> tdlocs = new Coords<TwoD>(td);

System.out.println("Contents of tdlocs.");
showXY(tdlocs); // OK, is a TwoD

//  showXYZ(tdlocs); // Error, not a ThreeD
//  showAll(tdlocs); // Error, not a FourD

// Now, create some FourD objects.
FourD fd[] = {
new FourD(1, 2, 3, 4),
new FourD(6, 8, 14, 8),
new FourD(22, 9, 4, 9),
new FourD(3, -2, -23, 17)

};

Coords<FourD> fdlocs = new Coords<FourD>(fd);

System.out.println("Contents of fdlocs.");
// These are all OK.
showXY(fdlocs);
showXYZ(fdlocs);
showAll(fdlocs);

}
}

The output from the program is shown here:

Contents of tdlocs.
X Y Coordinates:
0 0
7 9
18 4
-1 -23

Contents of fdlocs.
X Y Coordinates:
1 2
6 8
22 9
3 -2

X Y Z Coordinates:
1 2 3
6 8 14
22 9 4
3 -2 -23



X Y Z T Coordinates:
1 2 3 4
6 8 14 8
22 9 4 9
3 -2 -23 17

Notice these commented-out lines:

//  showXYZ(tdlocs); // Error, not a ThreeD
//  showAll(tdlocs); // Error, not a FourD

Because tdlocs is a Coords(TwoD) object, it cannot be used to call showXYZ( ) or
showAll( ) because bounded wildcard arguments in their declarations prevent it. To prove
this to yourself, try removing the comment symbols, and then attempt to compile the
program. You will receive compilation errors because of the type mismatches.

In general, to establish an upper bound for a wildcard, use the following type of wildcard
expression:

<? extends superclass>

where superclass is the name of the class that serves as the upper bound. Remember, this is an
inclusive clause because the class forming the upper bound (that is, specified by superclass) is
also within bounds.

You can also specify a lower bound for a wildcard by adding a super clause to a wildcard
declaration. Here is its general form:

<? super subclass>

In this case, only classes that are superclasses of subclass are acceptable arguments. This is an
exclusive clause, because it will not match the class specified by subclass.

Creating a Generic Method
As the preceding examples have shown, methods inside a generic class can make use of a
class’ type parameter and are, therefore, automatically generic relative to the type parameter.
However, it is possible to declare a generic method that uses one or more type parameters
of its own. Furthermore, it is possible to create a generic method that is enclosed within a
non-generic class.

Let’s begin with an example. The following program declares a non-generic class called
GenMethDemo and a static generic method within that class called isIn( ). The isIn( ) method
determines if an object is a member of an array. It can be used with any type of object and
array as long as the array contains objects that are compatible with the type of the object
being sought.

// Demonstrate a simple generic method.
class GenMethDemo {

// Determine if an object is in an array.
static <T, V extends T> boolean isIn(T x, V[] y) {
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for(int i=0; i < y.length; i++)
if(x.equals(y[i])) return true;

return false;
}

public static void main(String args[]) {

// Use isIn() on Integers.
Integer nums[] = { 1, 2, 3, 4, 5 };

if(isIn(2, nums))
System.out.println("2 is in nums");

if(!isIn(7, nums))
System.out.println("7 is not in nums");

System.out.println();

// Use isIn() on Strings.
String strs[] = { "one", "two", "three",

"four", "five" };

if(isIn("two", strs))
System.out.println("two is in strs");

if(!isIn("seven", strs))
System.out.println("seven is not in strs");

// Oops! Won't compile! Types must be compatible.
//    if(isIn("two", nums))
//      System.out.println("two is in strs");
}

}

The output from the program is shown here:

2 is in nums
7 is not in nums

two is in strs
seven is not in strs

Let’s examine isIn( ) closely. First, notice how it is declared by this line:

static <T, V extends T> boolean isIn(T x, V[] y) {

The type parameters are declared before the return type of the method. Second, notice that
the type V is upper-bounded by T. Thus, V must either be the same as type T, or a subclass
of T. This relationship enforces that isIn( ) can be called only with arguments that are compatible
with each other. Also notice that isIn( ) is static, enabling it to be called independently of any
object. Understand, though, that generic methods can be either static or non-static. There is
no restriction in this regard.
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Now, notice how isIn( ) is called within main( ) by use of the normal call syntax, without
the need to specify type arguments. This is because the types of the arguments are automatically
discerned, and the types of T and V are adjusted accordingly. For example, in the first call:

if(isIn(2, nums))

the type of the first argument is Integer (due to autoboxing), which causes Integer to be
substituted for T. The base type of the second argument is also Integer, which makes Integer
a substitute for V, too.

In the second call, String types are used, and the types of T and V are replaced by String.
Now, notice the commented-out code, shown here:

//    if(isIn("two", nums))
//      System.out.println("two is in strs");

If you remove the comments and then try to compile the program, you will receive an error. The
reason is that the type parameter V is bounded by T in the extends clause in V’s declaration.
This means that V must be either type T, or a subclass of T. In this case, the first argument is of
type String, making T into String, but the second argument is of type Integer, which is not a
subclass of String. This causes a compile-time type-mismatch error. This ability to enforce type
safety is one of the most important advantages of generic methods.

The syntax used to create isIn( ) can be generalized. Here is the syntax for a generic method:

<type-param-list> ret-type meth-name(param-list) { // ...

In all cases, type-param-list is a comma-separated list of type parameters. Notice that for
a generic method, the type parameter list precedes the return type.

Generic Constructors
It is also possible for constructors to be generic, even if their class is not. For example, consider
the following short program:

// Use a generic constructor.
class GenCons {
private double val;

<T extends Number> GenCons(T arg) {
val = arg.doubleValue();

}

void showval() {
System.out.println("val: " + val);

}
}

class GenConsDemo {
public static void main(String args[]) {

GenCons test = new GenCons(100);
GenCons test2 = new GenCons(123.5F);



test.showval();
test2.showval();

}
}

The output is shown here:

val: 100.0
val: 123.5

Because GenCons( ) specifies a parameter of a generic type, which must be a subclass of
Number, GenCons( ) can be called with any numeric type, including Integer, Float, or
Double. Therefore, even though GenCons is not a generic class, its constructor is generic.

Generic Interfaces
In addition to generic classes and methods, you can also have generic interfaces. Generic
interfaces are specified just like generic classes. Here is an example. It creates an interface
called MinMax that declares the methods min( ) and max( ), which are expected to return
the minimum and maximum value of some set of objects.

// A generic interface example.

// A Min/Max interface.
interface MinMax<T extends Comparable<T>> {
T min();
T max();

}

// Now, implement MinMax
class MyClass<T extends Comparable<T>> implements MinMax<T> {
T[] vals;

MyClass(T[] o) { vals = o; }

// Return the minimum value in vals.
public T min() {
T v = vals[0];

for(int i=1; i < vals.length; i++)
if(vals[i].compareTo(v) < 0) v = vals[i];

return v;
}

// Return the maximum value in vals.
public T max() {
T v = vals[0];

for(int i=1; i < vals.length; i++)
if(vals[i].compareTo(v) > 0) v = vals[i];
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return v;
}

}

class GenIFDemo {
public static void main(String args[]) {
Integer inums[] = {3, 6, 2, 8, 6 };
Character chs[] = {'b', 'r', 'p', 'w' };

MyClass<Integer> iob = new MyClass<Integer>(inums);
MyClass<Character> cob = new MyClass<Character>(chs);

System.out.println("Max value in inums: " + iob.max());
System.out.println("Min value in inums: " + iob.min());

System.out.println("Max value in chs: " + cob.max());
System.out.println("Min value in chs: " + cob.min());

}
}

The output is shown here:

Max value in inums: 8
Min value in inums: 2
Max value in chs: w
Min value in chs: b

Although most aspects of this program should be easy to understand, a couple of key
points need to be made. First, notice that MinMax is declared like this:

interface MinMax<T extends Comparable<T>> {

In general, a generic interface is declared in the same way as is a generic class. In this case,
the type parameter is T, and its upper bound is Comparable, which is an interface defined by
java.lang. A class that implements Comparable defines objects that can be ordered. Thus,
requiring an upper bound of Comparable ensures that MinMax can be used only with
objects that are capable of being compared. (See Chapter 16 for more information on
Comparable.) Notice that Comparable is also generic. (It was retrofitted for generics by
JDK 5.) It takes a type parameter that specifies the type of the objects being compared.

Next, MinMax is implemented by MyClass. Notice the declaration of MyClass,
shown here:

class MyClass<T extends Comparable<T>> implements MinMax<T> {

Pay special attention to the way that the type parameter T is declared by MyClass and
then passed to MinMax. Because MinMax requires a type that implements Comparable,
the implementing class (MyClass in this case) must specify the same bound. Furthermore,
once this bound has been established, there is no need to specify it again in the implements
clause. In fact, it would be wrong to do so. For example, this line is incorrect and won’t compile:
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// This is wrong!
class MyClass<T extends Comparable<T>>

implements MinMax<T extends Comparable<T>> {

Once the type parameter has been established, it is simply passed to the interface without
further modification.

In general, if a class implements a generic interface, then that class must also be generic,
at least to the extent that it takes a type parameter that is passed to the interface. For example,
the following attempt to declare MyClass is in error:

class MyClass implements MinMax<T> { // Wrong!

Because MyClass does not declare a type parameter, there is no way to pass one to MinMax.
In this case, the identifier T is simply unknown, and the compiler reports an error. Of course,
if a class implements a specific type of generic interface, such as shown here:

class MyClass implements MinMax<Integer> { // OK

then the implementing class does not need to be generic.
The generic interface offers two benefits. First, it can be implemented for different types

of data. Second, it allows you to put constraints (that is, bounds) on the types of data for which
the interface can be implemented. In the MinMax example, only types that implement the
Comparable interface can be passed to T.

Here is the generalized syntax for a generic interface:

interface interface-name<type-param-list> { // ...

Here, type-param-list is a comma-separated list of type parameters. When a generic interface
is implemented, you must specify the type arguments, as shown here:

class class-name<type-param-list>
implements interface-name<type-arg-list> {

Raw Types and Legacy Code
Because support for generics is a recent addition to Java, it was necessary to provide some
transition path from old, pre-generics code. At the time of this writing, there are still millions
and millions of lines of pre-generics legacy code that must remain both functional and
compatible with generics. Pre-generics code must be able to work with generics, and
generic code must be able to work with pre-generic code.

To handle the transition to generics, Java allows a generic class to be used without any
type arguments. This creates a raw type for the class. This raw type is compatible with legacy
code, which has no knowledge of generics. The main drawback to using the raw type is that
the type safety of generics is lost.

Here is an example that shows a raw type in action:

// Demonstrate a raw type.
class Gen<T> {



T ob; // declare an object of type T

// Pass the constructor a reference to
// an object of type T.
Gen(T o) {
ob = o;

}

// Return ob.
T getob() {
return ob;

}
}

// Demonstrate raw type.
class RawDemo {
public static void main(String args[]) {

// Create a Gen object for Integers.
Gen<Integer> iOb = new Gen<Integer>(88);

// Create a Gen object for Strings.
Gen<String> strOb = new Gen<String>("Generics Test");

// Create a raw-type Gen object and give it
// a Double value.
Gen raw = new Gen(new Double(98.6));

// Cast here is necessary because type is unknown.
double d = (Double) raw.getob();
System.out.println("value: " + d);

// The use of a raw type can lead to run-time
// exceptions.  Here are some examples.

// The following cast causes a run-time error!
//    int i = (Integer) raw.getob(); // run-time error

// This assignment overrides type safety.
strOb = raw; // OK, but potentially wrong

//    String str = strOb.getob(); // run-time error

// This assignment also overrides type safety.
raw = iOb; // OK, but potentially wrong

//    d = (Double) raw.getob(); // run-time error
}

}

This program contains several interesting things. First, a raw type of the generic Gen
class is created by the following declaration:

Gen raw = new Gen(new Double(98.6));
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Notice that no type arguments are specified. In essence, this creates a Gen object whose
type T is replaced by Object.

A raw type is not type safe. Thus, a variable of a raw type can be assigned a reference to
any type of Gen object. The reverse is also allowed; a variable of a specific Gen type can be
assigned a reference to a raw Gen object. However, both operations are potentially unsafe
because the type checking mechanism of generics is circumvented.

This lack of type safety is illustrated by the commented-out lines at the end of the program.
Let’s examine each case. First, consider the following situation:

//    int i = (Integer) raw.getob(); // run-time error

In this statement, the value of ob inside raw is obtained, and this value is cast to Integer.
The trouble is that raw contains a Double value, not an integer value. However, this cannot
be detected at compile time because the type of raw is unknown. Thus, this statement fails
at run time.

The next sequence assigns to a strOb (a reference of type Gen<String>) a reference to
a raw Gen object:

strOb = raw; // OK, but potentially wrong
//    String str = strOb.getob(); // run-time error

The assignment, itself, is syntactically correct, but questionable. Because strOb is of type
Gen<String>, it is assumed to contain a String. However, after the assignment, the object
referred to by strOb contains a Double. Thus, at run time, when an attempt is made to assign
the contents of strOb to str, a run-time error results because strOb now contains a Double.
Thus, the assignment of a raw reference to a generic reference bypasses the type-safety
mechanism.

The following sequence inverts the preceding case:

raw = iOb; // OK, but potentially wrong
//    d = (Double) raw.getob(); // run-time error

Here, a generic reference is assigned to a raw reference variable. Although this is syntactically
correct, it can lead to problems, as illustrated by the second line. In this case, raw now refers
to an object that contains an Integer object, but the cast assumes that it contains a Double.
This error cannot be prevented at compile time. Rather, it causes a run-time error.

Because of the potential for danger inherent in raw types, javac displays unchecked warnings
when a raw type is used in a way that might jeopardize type safety. In the preceding program,
these lines generate unchecked warnings:

Gen raw = new Gen(new Double(98.6));

strOb = raw; // OK, but potentially wrong

In the first line, it is the call to the Gen constructor without a type argument that causes the
warning. In the second line, it is the assignment of a raw reference to a generic variable that
generates the warning.



At first, you might think that this line should also generate an unchecked warning, but
it does not:

raw = iOb; // OK, but potentially wrong

No compiler warning is issued because the assignment does not cause any further loss of
type safety than had already occurred when raw was created.

One final point: You should limit the use of raw types to those cases in which you must
mix legacy code with newer, generic code. Raw types are simply a transitional feature and
not something that should be used for new code.

Generic Class Hierarchies
Generic classes can be part of a class hierarchy in just the same way as a non-generic class.
Thus, a generic class can act as a superclass or be a subclass. The key difference between
generic and non-generic hierarchies is that in a generic hierarchy, any type arguments needed
by a generic superclass must be passed up the hierarchy by all subclasses. This is similar to
the way that constructor arguments must be passed up a hierarchy.

Using a Generic Superclass
Here is a simple example of a hierarchy that uses a generic superclass:

// A simple generic class hierarchy.
class Gen<T> {
T ob;

Gen(T o) {
ob = o;

}

// Return ob.
T getob() {
return ob;

}
}

// A subclass of Gen.
class Gen2<T> extends Gen<T> {
Gen2(T o) {
super(o);

}
}

In this hierarchy, Gen2 extends the generic class Gen. Notice how Gen2 is declared by
the following line:

class Gen2<T> extends Gen<T> {
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The type parameter T is specified by Gen2 and is also passed to Gen in the extends clause.
This means that whatever type is passed to Gen2 will also be passed to Gen. For example,
this declaration,

Gen2<Integer> num = new Gen2<Integer>(100);

passes Integer as the type parameter to Gen. Thus, the ob inside the Gen portion of Gen2
will be of type Integer.

Notice also that Gen2 does not use the type parameter T except to pass it to the Gen
superclass. Thus, even if a subclass of a generic superclass would otherwise not need to
be generic, it still must specify the type parameter(s) required by its generic superclass.

Of course, a subclass is free to add its own type parameters, if needed. For example, here
is a variation on the preceding hierarchy in which Gen2 adds a type parameter of its own:

// A subclass can add its own type parameters.
class Gen<T> {
T ob; // declare an object of type T

// Pass the constructor a reference to
// an object of type T.
Gen(T o) {
ob = o;

}

// Return ob.
T getob() {
return ob;

}
}

// A subclass of Gen that defines a second
// type parameter, called V.
class Gen2<T, V> extends Gen<T> {
V ob2;

Gen2(T o, V o2) {
super(o);
ob2 = o2;

}

V getob2() {
return ob2;

}
}

// Create an object of type Gen2.
class HierDemo {
public static void main(String args[]) {
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// Create a Gen2 object for String and Integer.
Gen2<String, Integer> x =
new Gen2<String, Integer>("Value is: ", 99);

System.out.print(x.getob());
System.out.println(x.getob2());

}
}

Notice the declaration of this version of Gen2, which is shown here:

class Gen2<T, V> extends Gen<T> {

Here, T is the type passed to Gen, and V is the type that is specific to Gen2. V is used to
declare an object called ob2, and as a return type for the method getob2( ). In main( ), a
Gen2 object is created in which type parameter T is String, and type parameter V is Integer.
The program displays the following, expected, result:

Value is: 99

A Generic Subclass
It is perfectly acceptable for a non-generic class to be the superclass of a generic subclass.
For example, consider this program:

// A non-generic class can be the superclass
// of a generic subclass.

// A non-generic class.
class NonGen {
int num;

NonGen(int i) {
num = i;

}

int getnum() {
return num;

}
}

// A generic subclass.
class Gen<T> extends NonGen {
T ob; // declare an object of type T

// Pass the constructor a reference to
// an object of type T.
Gen(T o, int i) {
super(i);
ob = o;

}
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// Return ob.
T getob() {
return ob;

}
}

// Create a Gen object.
class HierDemo2 {
public static void main(String args[]) {

// Create a Gen object for String.
Gen<String> w = new Gen<String>("Hello", 47);

System.out.print(w.getob() + " ");
System.out.println(w.getnum());

}
}

The output from the program is shown here:

Hello 47

In the program, notice how Gen inherits NonGen in the following declaration:

class Gen<T> extends NonGen {

Because NonGen is not generic, no type argument is specified. Thus, even though Gen
declares the type parameter T, it is not needed by (nor can it be used by) NonGen. Thus,
NonGen is inherited by Gen in the normal way. No special conditions apply.

Run-Time Type Comparisons Within a Generic Hierarchy
Recall the run-time type information operator instanceof that was described in Chapter 13.
As explained, instanceof determines if an object is an instance of a class. It returns true if
an object is of the specified type or can be cast to the specified type. The instanceof operator
can be applied to objects of generic classes. The following class demonstrates some of the
type compatibility implications of a generic hierarchy:

// Use the instanceof operator with a generic class hierarchy.
class Gen<T> {
T ob;

Gen(T o) {
ob = o;

}

// Return ob.
T getob() {
return ob;

}
}
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// A subclass of Gen.
class Gen2<T> extends Gen<T> {
Gen2(T o) {
super(o);

}
}

// Demonstrate run-time type ID implications of generic
// class hierarchy.
class HierDemo3 {
public static void main(String args[]) {

// Create a Gen object for Integers.
Gen<Integer> iOb = new Gen<Integer>(88);

// Create a Gen2 object for Integers.
Gen2<Integer> iOb2 = new Gen2<Integer>(99);

// Create a Gen2 object for Strings.
Gen2<String> strOb2 = new Gen2<String>("Generics Test");

// See if iOb2 is some form of Gen2.
if(iOb2 instanceof Gen2<?>)
System.out.println("iOb2 is instance of Gen2");

// See if iOb2 is some form of Gen.
if(iOb2 instanceof Gen<?>)
System.out.println("iOb2 is instance of Gen");

System.out.println();

// See if strOb2 is a Gen2.
if(strOb2 instanceof Gen2<?>)
System.out.println("strOb2 is instance of Gen2");

// See if strOb2 is a Gen.
if(strOb2 instanceof Gen<?>)
System.out.println("strOb2 is instance of Gen");

System.out.println();

// See if iOb is an instance of Gen2, which it is not.
if(iOb instanceof Gen2<?>)
System.out.println("iOb is instance of Gen2");

// See if iOb is an instance of Gen, which it is.
if(iOb instanceof Gen<?>)
System.out.println("iOb is instance of Gen");

// The following can't be compiled because
// generic type info does not exist at run time.

//    if(iOb2 instanceof Gen2<Integer>)
//      System.out.println("iOb2 is instance of Gen2<Integer>");
}

}
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The output from the program is shown here:

iOb2 is instance of Gen2
iOb2 is instance of Gen

strOb2 is instance of Gen2
strOb2 is instance of Gen

iOb is instance of Gen

In this program, Gen2 is a subclass of Gen, which is generic on type parameter T. In
main( ), three objects are created. The first is iOb, which is an object of type Gen<Integer>.
The second is iOb2, which is an instance of Gen2<Integer>. Finally, strOb2 is an object of
type Gen2<String>.

Then, the program performs these instanceof tests on the type of iOb2:

// See if iOb2 is some form of Gen2.
if(iOb2 instanceof Gen2<?>)
System.out.println("iOb2 is instance of Gen2");

// See if iOb2 is some form of Gen.
if(iOb2 instanceof Gen<?>)
System.out.println("iOb2 is instance of Gen");

As the output shows, both succeed. In the first test, iOb2 is checked against Gen2<?>. This
test succeeds because it simply confirms that iOb2 is an object of some type of Gen2 object.
The use of the wildcard enables instanceof to determine if iOb2 is an object of any type of
Gen2. Next, iOb2 is tested against Gen<?>, the superclass type. This is also true because
iOb2 is some form of Gen, the superclass. The next few lines in main( ) show the same
sequence (and same results) for strOb2.

Next, iOb, which is an instance of Gen<Integer> (the superclass), is tested by these lines:

// See if iOb is an instance of Gen2, which it is not.
if(iOb instanceof Gen2<?>)
System.out.println("iOb is instance of Gen2");

// See if iOb is an instance of Gen, which it is.
if(iOb instanceof Gen<?>)
System.out.println("iOb is instance of Gen");

The first if fails because iOb is not some type of Gen2 object. The second test succeeds because
iOb is some type of Gen object.

Now, look closely at these commented-out lines:

// The following can't be compiled because
// generic type info does not exist at run time.

//    if(iOb2 instanceof Gen2<Integer>)
//      System.out.println("iOb2 is instance of Gen2<Integer>");

As the comments indicate, these lines can’t be compiled because they attempt to compare
iOb2 with a specific type of Gen2, in this case, Gen2<Integer>. Remember, there is no generic



type information available at run time. Therefore, there is no way for instanceof to know if
iOb2 is an instance of Gen2<Integer> or not.

Casting
You can cast one instance of a generic class into another only if the two are otherwise
compatible and their type arguments are the same. For example, assuming the foregoing
program, this cast is legal:

(Gen<Integer>) iOb2 // legal

because iOb2 is an instance of Gen<Integer>. But, this cast:

(Gen<Long>) iOb2 // illegal

is not legal because iOb2 is not an instance of Gen<Long>.

Overriding Methods in a Generic Class
A method in a generic class can be overridden just like any other method. For example,
consider this program in which the method getob( ) is overridden:

// Overriding a generic method in a generic class.
class Gen<T> {
T ob; // declare an object of type T

// Pass the constructor a reference to
// an object of type T.
Gen(T o) {
ob = o;

}

// Return ob.
T getob() {
System.out.print("Gen's getob(): " );
return ob;

}
}

// A subclass of Gen that overrides getob().
class Gen2<T> extends Gen<T> {

Gen2(T o) {
super(o);

}

// Override getob().
T getob() {
System.out.print("Gen2's getob(): ");
return ob;

}
}
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// Demonstrate generic method override.
class OverrideDemo {
public static void main(String args[]) {

// Create a Gen object for Integers.
Gen<Integer> iOb = new Gen<Integer>(88);

// Create a Gen2 object for Integers.
Gen2<Integer> iOb2 = new Gen2<Integer>(99);

// Create a Gen2 object for Strings.
Gen2<String> strOb2 = new Gen2<String>("Generics Test");

System.out.println(iOb.getob());
System.out.println(iOb2.getob());
System.out.println(strOb2.getob());

}
}

The output is shown here:

Gen's getob(): 88
Gen2's getob(): 99
Gen2's getob(): Generics Test

As the output confirms, the overridden version of getob( ) is called for objects of type Gen2,
but the superclass version is called for objects of type Gen.

Erasure
Usually, it is not necessary to know the details about how the Java compiler transforms
your source code into object code. However, in the case of generics, some general
understanding of the process is important because it explains why the generic features work
as they do—and why their behavior is sometimes a bit surprising. For this reason, a brief
discussion of how generics are implemented in Java is in order.

An important constraint that governed the way that generics were added to Java was
the need for compatibility with previous versions of Java. Simply put, generic code had to
be compatible with preexisting, non-generic code. Thus, any changes to the syntax of the
Java language, or to the JVM, had to avoid breaking older code. The way Java implements
generics while satisfying this constraint is through the use of erasure.

In general, here is how erasure works. When your Java code is compiled, all generic type
information is removed (erased). This means replacing type parameters with their bound
type, which is Object if no explicit bound is specified, and then applying the appropriate
casts (as determined by the type arguments) to maintain type compatibility with the types
specified by the type arguments. The compiler also enforces this type compatibility. This
approach to generics means that no type parameters exist at run time. They are simply a
source-code mechanism.
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