
9
Packages and Interfaces

This chapter examines two of Java’s most innovative features: packages and interfaces.
Packages are containers for classes that are used to keep the class name space
compartmentalized. For example, a package allows you to create a class named List,

which you can store in your own package without concern that it will collide with some
other class named List stored elsewhere. Packages are stored in a hierarchical manner and
are explicitly imported into new class definitions.

In previous chapters, you have seen how methods define the interface to the data in
a class. Through the use of the interface keyword, Java allows you to fully abstract the
interface from its implementation. Using interface, you can specify a set of methods that
can be implemented by one or more classes. The interface, itself, does not actually define
any implementation. Although they are similar to abstract classes, interfaces have an
additional capability: A class can implement more than one interface. By contrast, a class
can only inherit a single superclass (abstract or otherwise).

Packages
In the preceding chapters, the name of each example class was taken from the same
name space. This means that a unique name had to be used for each class to avoid name
collisions. After a while, without some way to manage the name space, you could run out
of convenient, descriptive names for individual classes. You also need some way to be
assured that the name you choose for a class will be reasonably unique and not collide
with class names chosen by other programmers. (Imagine a small group of programmers
fighting over who gets to use the name “Foobar” as a class name. Or, imagine the entire
Internet community arguing over who first named a class “Espresso.”) Thankfully, Java
provides a mechanism for partitioning the class name space into more manageable
chunks. This mechanism is the package. The package is both a naming and a visibility
control mechanism. You can define classes inside a package that are not accessible by
code outside that package. You can also define class members that are only exposed
to other members of the same package. This allows your classes to have intimate
knowledge of each other, but not expose that knowledge to the rest of the world.

1 8 3

184 P a r t I : T h e J a v a L a n g u a g e

Defining a Package
To create a package is quite easy: simply include a package command as the first statement
in a Java source file. Any classes declared within that file will belong to the specified package.
The package statement defines a name space in which classes are stored. If you omit the
package statement, the class names are put into the default package, which has no name.
(This is why you haven’t had to worry about packages before now.) While the default package
is fine for short, sample programs, it is inadequate for real applications. Most of the time,
you will define a package for your code.

This is the general form of the package statement:

package pkg;

Here, pkg is the name of the package. For example, the following statement creates a package
called MyPackage.

package MyPackage;

Java uses file system directories to store packages. For example, the .class files for any
classes you declare to be part of MyPackage must be stored in a directory called MyPackage.
Remember that case is significant, and the directory name must match the package name
exactly.

More than one file can include the same package statement. The package statement
simply specifies to which package the classes defined in a file belong. It does not exclude
other classes in other files from being part of that same package. Most real-world packages
are spread across many files.

You can create a hierarchy of packages. To do so, simply separate each package name
from the one above it by use of a period. The general form of a multileveled package statement
is shown here:

package pkg1[.pkg2[.pkg3]];

A package hierarchy must be reflected in the file system of your Java development
system. For example, a package declared as

package java.awt.image;

needs to be stored in java\awt\image in a Windows environment. Be sure to choose your
package names carefully. You cannot rename a package without renaming the directory in
which the classes are stored.

Finding Packages and CLASSPATH
As just explained, packages are mirrored by directories. This raises an important question:
How does the Java run-time system know where to look for packages that you create? The
answer has three parts. First, by default, the Java run-time system uses the current working
directory as its starting point. Thus, if your package is in a subdirectory of the current
directory, it will be found. Second, you can specify a directory path or paths by setting the

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 185

CLASSPATH environmental variable. Third, you can use the -classpath option with java
and javac to specify the path to your classes.

For example, consider the following package specification:

package MyPack

In order for a program to find MyPack, one of three things must be true. Either the program
can be executed from a directory immediately above MyPack, or the CLASSPATH must be
set to include the path to MyPack, or the -classpath option must specify the path to MyPack
when the program is run via java.

When the second two options are used, the class path must not include MyPack, itself.
It must simply specify the path to MyPack. For example, in a Windows environment, if the
path to MyPack is

C:\MyPrograms\Java\MyPack

Then the class path to MyPack is

C:\MyPrograms\Java

The easiest way to try the examples shown in this book is to simply create the package
directories below your current development directory, put the .class files into the
appropriate directories, and then execute the programs from the development directory.
This is the approach used in the following example.

A Short Package Example
Keeping the preceding discussion in mind, you can try this simple package:

// A simple package
package MyPack;

class Balance {
String name;
double bal;

Balance(String n, double b) {
name = n;
bal = b;

}

void show() {
if(bal<0)
System.out.print("--> ");

System.out.println(name + ": $" + bal);
}

}

class AccountBalance {
public static void main(String args[]) {
Balance current[] = new Balance[3];

186 P a r t I : T h e J a v a L a n g u a g e

current[0] = new Balance("K. J. Fielding", 123.23);
current[1] = new Balance("Will Tell", 157.02);
current[2] = new Balance("Tom Jackson", -12.33);

for(int i=0; i<3; i++) current[i].show();
}

}

Call this file AccountBalance.java and put it in a directory called MyPack.
Next, compile the file. Make sure that the resulting .class file is also in the MyPack

directory. Then, try executing the AccountBalance class, using the following command line:

java MyPack.AccountBalance

Remember, you will need to be in the directory above MyPack when you execute this command.
(Alternatively, you can use one of the other two options described in the preceding section to
specify the path MyPack.)

As explained, AccountBalance is now part of the package MyPack. This means that it
cannot be executed by itself. That is, you cannot use this command line:

java AccountBalance

AccountBalance must be qualified with its package name.

Access Protection
In the preceding chapters, you learned about various aspects of Java’s access control mechanism
and its access specifiers. For example, you already know that access to a private member of
a class is granted only to other members of that class. Packages add another dimension to
access control. As you will see, Java provides many levels of protection to allow fine-grained
control over the visibility of variables and methods within classes, subclasses, and packages.

Classes and packages are both means of encapsulating and containing the name space
and scope of variables and methods. Packages act as containers for classes and other
subordinate packages. Classes act as containers for data and code. The class is Java’s
smallest unit of abstraction. Because of the interplay between classes and packages, Java
addresses four categories of visibility for class members:

• Subclasses in the same package

• Non-subclasses in the same package

• Subclasses in different packages

• Classes that are neither in the same package nor subclasses

The three access specifiers, private, public, and protected, provide a variety of ways
to produce the many levels of access required by these categories. Table 9-1 sums up the
interactions.

While Java’s access control mechanism may seem complicated, we can simplify it as
follows. Anything declared public can be accessed from anywhere. Anything declared
private cannot be seen outside of its class. When a member does not have an explicit access

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 187

specification, it is visible to subclasses as well as to other classes in the same package. This is
the default access. If you want to allow an element to be seen outside your current package,
but only to classes that subclass your class directly, then declare that element protected.

Table 9-1 applies only to members of classes. A non-nested class has only two possible
access levels: default and public. When a class is declared as public, it is accessible by any
other code. If a class has default access, then it can only be accessed by other code within its
same package. When a class is public, it must be the only public class declared in the file,
and the file must have the same name as the class.

An Access Example
The following example shows all combinations of the access control modifiers. This example
has two packages and five classes. Remember that the classes for the two different
packages need to be stored in directories named after their respective packages—in this
case, p1 and p2.

The source for the first package defines three classes: Protection, Derived, and SamePackage.
The first class defines four int variables in each of the legal protection modes. The variable n
is declared with the default protection, n_pri is private, n_pro is protected, and n_pub is
public.

Each subsequent class in this example will try to access the variables in an instance
of this class. The lines that will not compile due to access restrictions are commented out.
Before each of these lines is a comment listing the places from which this level of protection
would allow access.

The second class, Derived, is a subclass of Protection in the same package, p1. This
grants Derived access to every variable in Protection except for n_pri, the private one. The
third class, SamePackage, is not a subclass of Protection, but is in the same package and
also has access to all but n_pri.

Private No Modifier Protected Public

Same class Yes Yes Yes Yes

Same
package
subclass

No Yes Yes Yes

Same
package
non-subclass

No Yes Yes Yes

Different
package
subclass

No No Yes Yes

Different
package
non-subclass

No No No Yes

TABLE 9-1
Class Member
Access

This is file Protection.java:

package p1;

public class Protection {
int n = 1;
private int n_pri = 2;
protected int n_pro = 3;
public int n_pub = 4;

public Protection() {
System.out.println("base constructor");
System.out.println("n = " + n);
System.out.println("n_pri = " + n_pri);
System.out.println("n_pro = " + n_pro);
System.out.println("n_pub = " + n_pub);

}
}

This is file Derived.java:

package p1;

class Derived extends Protection {
Derived() {
System.out.println("derived constructor");
System.out.println("n = " + n);

// class only
// System.out.println("n_pri = "4 + n_pri);

System.out.println("n_pro = " + n_pro);
System.out.println("n_pub = " + n_pub);

}
}

This is file SamePackage.java:

package p1;

class SamePackage {
SamePackage() {

Protection p = new Protection();
System.out.println("same package constructor");
System.out.println("n = " + p.n);

// class only
// System.out.println("n_pri = " + p.n_pri);

System.out.println("n_pro = " + p.n_pro);
System.out.println("n_pub = " + p.n_pub);

}
}

188 P a r t I : T h e J a v a L a n g u a g e

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 189

Following is the source code for the other package, p2. The two classes defined in p2
cover the other two conditions that are affected by access control. The first class, Protection2, is
a subclass of p1.Protection. This grants access to all of p1.Protection’s variables except for
n_pri (because it is private) and n, the variable declared with the default protection. Remember,
the default only allows access from within the class or the package, not extra-package
subclasses. Finally, the class OtherPackage has access to only one variable, n_pub, which
was declared public.

This is file Protection2.java:

package p2;

class Protection2 extends p1.Protection {
Protection2() {
System.out.println("derived other package constructor");

// class or package only
// System.out.println("n = " + n);

// class only
// System.out.println("n_pri = " + n_pri);

System.out.println("n_pro = " + n_pro);
System.out.println("n_pub = " + n_pub);

}
}

This is file OtherPackage.java:

package p2;

class OtherPackage {
OtherPackage() {
p1.Protection p = new p1.Protection();
System.out.println("other package constructor");

// class or package only
// System.out.println("n = " + p.n);

// class only
// System.out.println("n_pri = " + p.n_pri);

// class, subclass or package only
// System.out.println("n_pro = " + p.n_pro);

System.out.println("n_pub = " + p.n_pub);
}

}

If you wish to try these two packages, here are two test files you can use. The one for
package p1 is shown here:

// Demo package p1.
package p1;

// Instantiate the various classes in p1.
public class Demo {
public static void main(String args[]) {
Protection ob1 = new Protection();
Derived ob2 = new Derived();
SamePackage ob3 = new SamePackage();

}
}

The test file for p2 is shown next:

// Demo package p2.
package p2;

// Instantiate the various classes in p2.
public class Demo {
public static void main(String args[]) {
Protection2 ob1 = new Protection2();
OtherPackage ob2 = new OtherPackage();

}
}

Importing Packages
Given that packages exist and are a good mechanism for compartmentalizing diverse classes
from each other, it is easy to see why all of the built-in Java classes are stored in packages.
There are no core Java classes in the unnamed default package; all of the standard classes
are stored in some named package. Since classes within packages must be fully qualified
with their package name or names, it could become tedious to type in the long dot-separated
package path name for every class you want to use. For this reason, Java includes the import
statement to bring certain classes, or entire packages, into visibility. Once imported, a class
can be referred to directly, using only its name. The import statement is a convenience to
the programmer and is not technically needed to write a complete Java program. If you are
going to refer to a few dozen classes in your application, however, the import statement will
save a lot of typing.

In a Java source file, import statements occur immediately following the package statement
(if it exists) and before any class definitions. This is the general form of the import statement:

import pkg1[.pkg2].(classname|*);

Here, pkg1 is the name of a top-level package, and pkg2 is the name of a subordinate
package inside the outer package separated by a dot (.). There is no practical limit on the
depth of a package hierarchy, except that imposed by the file system. Finally, you specify

190 P a r t I : T h e J a v a L a n g u a g e

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 191

either an explicit classname or a star (*), which indicates that the Java compiler should import
the entire package. This code fragment shows both forms in use:

import java.util.Date;
import java.io.*;

CAUTIONAUTION The star form may increase compilation time—especially if you import several large
packages. For this reason it is a good idea to explicitly name the classes that you want to use
rather than importing whole packages. However, the star form has absolutely no effect on the
run-time performance or size of your classes.

All of the standard Java classes included with Java are stored in a package called java.
The basic language functions are stored in a package inside of the java package called
java.lang. Normally, you have to import every package or class that you want to use, but
since Java is useless without much of the functionality in java.lang, it is implicitly imported
by the compiler for all programs. This is equivalent to the following line being at the top of
all of your programs:

import java.lang.*;

If a class with the same name exists in two different packages that you import using the
star form, the compiler will remain silent, unless you try to use one of the classes. In that case,
you will get a compile-time error and have to explicitly name the class specifying its package.

It must be emphasized that the import statement is optional. Any place you use a class
name, you can use its fully qualified name, which includes its full package hierarchy. For
example, this fragment uses an import statement:

import java.util.*;
class MyDate extends Date {
}

The same example without the import statement looks like this:

class MyDate extends java.util.Date {
}

In this version, Date is fully-qualified.
As shown in Table 9-1, when a package is imported, only those items within the package

declared as public will be available to non-subclasses in the importing code. For example,
if you want the Balance class of the package MyPack shown earlier to be available as a
stand-alone class for general use outside of MyPack, then you will need to declare it as
public and put it into its own file, as shown here:

package MyPack;

/* Now, the Balance class, its constructor, and its
show() method are public. This means that they can
be used by non-subclass code outside their package.

*/
public class Balance {

192 P a r t I : T h e J a v a L a n g u a g e

String name;
double bal;

public Balance(String n, double b) {
name = n;
bal = b;

}

public void show() {
if(bal<0)
System.out.print("--> ");

System.out.println(name + ": $" + bal);
}

}

As you can see, the Balance class is now public. Also, its constructor and its show()
method are public, too. This means that they can be accessed by any type of code outside
the MyPack package. For example, here TestBalance imports MyPack and is then able to
make use of the Balance class:

import MyPack.*;

class TestBalance {
public static void main(String args[]) {

/* Because Balance is public, you may use Balance
class and call its constructor. */

Balance test = new Balance("J. J. Jaspers", 99.88);

test.show(); // you may also call show()
}

}

As an experiment, remove the public specifier from the Balance class and then try
compiling TestBalance. As explained, errors will result.

Interfaces
Using the keyword interface, you can fully abstract a class’ interface from its implementation.
That is, using interface, you can specify what a class must do, but not how it does it. Interfaces
are syntactically similar to classes, but they lack instance variables, and their methods are
declared without any body. In practice, this means that you can define interfaces that don’t
make assumptions about how they are implemented. Once it is defined, any number of
classes can implement an interface. Also, one class can implement any number of interfaces.

To implement an interface, a class must create the complete set of methods defined by
the interface. However, each class is free to determine the details of its own implementation.
By providing the interface keyword, Java allows you to fully utilize the “one interface,
multiple methods” aspect of polymorphism.

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 193

Interfaces are designed to support dynamic method resolution at run time. Normally,
in order for a method to be called from one class to another, both classes need to be present
at compile time so the Java compiler can check to ensure that the method signatures are
compatible. This requirement by itself makes for a static and nonextensible classing
environment. Inevitably in a system like this, functionality gets pushed up higher and higher
in the class hierarchy so that the mechanisms will be available to more and more subclasses.
Interfaces are designed to avoid this problem. They disconnect the definition of a method or
set of methods from the inheritance hierarchy. Since interfaces are in a different hierarchy from
classes, it is possible for classes that are unrelated in terms of the class hierarchy to implement
the same interface. This is where the real power of interfaces is realized.

NOTEOTE Interfaces add most of the functionality that is required for many applications that would
normally resort to using multiple inheritance in a language such as C++.

Defining an Interface
An interface is defined much like a class. This is the general form of an interface:

access interface name {
return-type method-name1(parameter-list);
return-type method-name2(parameter-list);
type final-varname1 = value;
type final-varname2 = value;
// ...
return-type method-nameN(parameter-list);
type final-varnameN = value;

}

When no access specifier is included, then default access results, and the interface is only
available to other members of the package in which it is declared. When it is declared as
public, the interface can be used by any other code. In this case, the interface must be the
only public interface declared in the file, and the file must have the same name as the interface.
name is the name of the interface, and can be any valid identifier. Notice that the methods that
are declared have no bodies. They end with a semicolon after the parameter list. They are,
essentially, abstract methods; there can be no default implementation of any method specified
within an interface. Each class that includes an interface must implement all of the methods.

Variables can be declared inside of interface declarations. They are implicitly final and
static, meaning they cannot be changed by the implementing class. They must also be
initialized. All methods and variables are implicitly public.

Here is an example of an interface definition. It declares a simple interface that contains
one method called callback() that takes a single integer parameter.

interface Callback {
void callback(int param);

}

194 P a r t I : T h e J a v a L a n g u a g e

Implementing Interfaces
Once an interface has been defined, one or more classes can implement that interface. To
implement an interface, include the implements clause in a class definition, and then create
the methods defined by the interface. The general form of a class that includes the implements
clause looks like this:

class classname [extends superclass] [implements interface [,interface...]] {
// class-body

}

If a class implements more than one interface, the interfaces are separated with a comma. If
a class implements two interfaces that declare the same method, then the same method will
be used by clients of either interface. The methods that implement an interface must be
declared public. Also, the type signature of the implementing method must match exactly
the type signature specified in the interface definition.

Here is a small example class that implements the Callback interface shown earlier.

class Client implements Callback {
// Implement Callback's interface
public void callback(int p) {

System.out.println("callback called with " + p);
}

}

Notice that callback() is declared using the public access specifier.

REMEMBEREMEMBER When you implement an interface method, it must be declared as public.

It is both permissible and common for classes that implement interfaces to define
additional members of their own. For example, the following version of Client implements
callback() and adds the method nonIfaceMeth():

class Client implements Callback {
// Implement Callback's interface
public void callback(int p) {
System.out.println("callback called with " + p);

}

void nonIfaceMeth() {
System.out.println("Classes that implement interfaces " +

"may also define other members, too.");
}

}

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 195

Accessing Implementations Through Interface References
You can declare variables as object references that use an interface rather than a class type.
Any instance of any class that implements the declared interface can be referred to by such
a variable. When you call a method through one of these references, the correct version will
be called based on the actual instance of the interface being referred to. This is one of the
key features of interfaces. The method to be executed is looked up dynamically at run time,
allowing classes to be created later than the code which calls methods on them. The calling
code can dispatch through an interface without having to know anything about the “callee.”
This process is similar to using a superclass reference to access a subclass object, as described
in Chapter 8.

CAUTIONAUTION Because dynamic lookup of a method at run time incurs a significant overhead when
compared with the normal method invocation in Java, you should be careful not to use interfaces
casually in performance-critical code.

The following example calls the callback() method via an interface reference variable:

class TestIface {
public static void main(String args[]) {
Callback c = new Client();
c.callback(42);

}
}

The output of this program is shown here:

callback called with 42

Notice that variable c is declared to be of the interface type Callback, yet it was assigned an
instance of Client. Although c can be used to access the callback() method, it cannot access
any other members of the Client class. An interface reference variable only has knowledge
of the methods declared by its interface declaration. Thus, c could not be used to access
nonIfaceMeth() since it is defined by Client but not Callback.

While the preceding example shows, mechanically, how an interface reference variable
can access an implementation object, it does not demonstrate the polymorphic power of
such a reference. To sample this usage, first create the second implementation of Callback,
shown here:

// Another implementation of Callback.
class AnotherClient implements Callback {
// Implement Callback's interface
public void callback(int p) {
System.out.println("Another version of callback");
System.out.println("p squared is " + (p*p));

}
}

196 P a r t I : T h e J a v a L a n g u a g e

Now, try the following class:

class TestIface2 {
public static void main(String args[]) {
Callback c = new Client();
AnotherClient ob = new AnotherClient();

c.callback(42);

c = ob; // c now refers to AnotherClient object
c.callback(42);

}
}

The output from this program is shown here:

callback called with 42
Another version of callback
p squared is 1764

As you can see, the version of callback() that is called is determined by the type of object
that c refers to at run time. While this is a very simple example, you will see another, more
practical one shortly.

Partial Implementations
If a class includes an interface but does not fully implement the methods defined by that
interface, then that class must be declared as abstract. For example:

abstract class Incomplete implements Callback {
int a, b;
void show() {
System.out.println(a + " " + b);

}
// ...

}

Here, the class Incomplete does not implement callback() and must be declared as abstract.
Any class that inherits Incomplete must implement callback() or be declared abstract itself.

Nested Interfaces
An interface can be declared a member of a class or another interface. Such an interface is
called a member interface or a nested interface. A nested interface can be declared as public,
private, or protected. This differs from a top-level interface, which must either be declared
as public or use the default access level, as previously described. When a nested interface is
used outside of its enclosing scope, it must be qualified by the name of the class or interface
of which it is a member. Thus, outside of the class or interface in which a nested interface is
declared, its name must be fully qualified.

Here is an example that demonstrates a nested interface:

// A nested interface example.

// This class contains a member interface.
class A {

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 197

// this is a nested interface
public interface NestedIF {
boolean isNotNegative(int x);

}
}

// B implements the nested interface.
class B implements A.NestedIF {
public boolean isNotNegative(int x) {
return x < 0 ? false : true;

}
}

class NestedIFDemo {
public static void main(String args[]) {

// use a nested interface reference
A.NestedIF nif = new B();

if(nif.isNotNegative(10))
System.out.println("10 is not negative");

if(nif.isNotNegative(-12))
System.out.println("this won't be displayed");

}
}

Notice that A defines a member interface called NestedIF and that it is declared public.
Next, B implements the nested interface by specifying

implements A.NestedIF

Notice that the name is fully qualified by the enclosing class’ name. Inside the main()
method, an A.NestedIF reference called nif is created, and it is assigned a reference to a
B object. Because B implements A.NestedIF, this is legal.

Applying Interfaces
To understand the power of interfaces, let’s look at a more practical example. In earlier
chapters, you developed a class called Stack that implemented a simple fixed-size stack.
However, there are many ways to implement a stack. For example, the stack can be of a
fixed size or it can be “growable.” The stack can also be held in an array, a linked list, a
binary tree, and so on. No matter how the stack is implemented, the interface to the stack
remains the same. That is, the methods push() and pop() define the interface to the stack
independently of the details of the implementation. Because the interface to a stack is
separate from its implementation, it is easy to define a stack interface, leaving it to each
implementation to define the specifics. Let’s look at two examples.

First, here is the interface that defines an integer stack. Put this in a file called IntStack.java.
This interface will be used by both stack implementations.

// Define an integer stack interface.
interface IntStack {
void push(int item); // store an item
int pop(); // retrieve an item

}

The following program creates a class called FixedStack that implements a fixed-length
version of an integer stack:

// An implementation of IntStack that uses fixed storage.
class FixedStack implements IntStack {
private int stck[];
private int tos;

// allocate and initialize stack
FixedStack(int size) {
stck = new int[size];
tos = -1;

}

// Push an item onto the stack
public void push(int item) {
if(tos==stck.length-1) // use length member
System.out.println("Stack is full.");

else
stck[++tos] = item;

}

// Pop an item from the stack
public int pop() {
if(tos < 0) {
System.out.println("Stack underflow.");
return 0;

}
else
return stck[tos--];

}
}

class IFTest {
public static void main(String args[]) {
FixedStack mystack1 = new FixedStack(5);
FixedStack mystack2 = new FixedStack(8);

// push some numbers onto the stack
for(int i=0; i<5; i++) mystack1.push(i);
for(int i=0; i<8; i++) mystack2.push(i);

// pop those numbers off the stack
System.out.println("Stack in mystack1:");
for(int i=0; i<5; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in mystack2:");
for(int i=0; i<8; i++)

System.out.println(mystack2.pop());
}

}

198 P a r t I : T h e J a v a L a n g u a g e

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 199

Following is another implementation of IntStack that creates a dynamic stack by use
of the same interface definition. In this implementation, each stack is constructed with an
initial length. If this initial length is exceeded, then the stack is increased in size. Each time
more room is needed, the size of the stack is doubled.

// Implement a "growable" stack.
class DynStack implements IntStack {
private int stck[];
private int tos;

// allocate and initialize stack
DynStack(int size) {
stck = new int[size];
tos = -1;

}

// Push an item onto the stack
public void push(int item) {
// if stack is full, allocate a larger stack
if(tos==stck.length-1) {
int temp[] = new int[stck.length * 2]; // double size
for(int i=0; i<stck.length; i++) temp[i] = stck[i];
stck = temp;
stck[++tos] = item;

}
else
stck[++tos] = item;

}

// Pop an item from the stack
public int pop() {
if(tos < 0) {
System.out.println("Stack underflow.");
return 0;

}
else
return stck[tos--];

}
}

class IFTest2 {
public static void main(String args[]) {
DynStack mystack1 = new DynStack(5);
DynStack mystack2 = new DynStack(8);

// these loops cause each stack to grow
for(int i=0; i<12; i++) mystack1.push(i);
for(int i=0; i<20; i++) mystack2.push(i);

System.out.println("Stack in mystack1:");
for(int i=0; i<12; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in mystack2:");

200 P a r t I : T h e J a v a L a n g u a g e

for(int i=0; i<20; i++)
System.out.println(mystack2.pop());

}
}

The following class uses both the FixedStack and DynStack implementations. It does
so through an interface reference. This means that calls to push() and pop() are resolved
at run time rather than at compile time.

/* Create an interface variable and
access stacks through it.

*/
class IFTest3 {
public static void main(String args[]) {
IntStack mystack; // create an interface reference variable
DynStack ds = new DynStack(5);
FixedStack fs = new FixedStack(8);

mystack = ds; // load dynamic stack
// push some numbers onto the stack
for(int i=0; i<12; i++) mystack.push(i);

mystack = fs; // load fixed stack
for(int i=0; i<8; i++) mystack.push(i);

mystack = ds;
System.out.println("Values in dynamic stack:");
for(int i=0; i<12; i++)

System.out.println(mystack.pop());

mystack = fs;
System.out.println("Values in fixed stack:");
for(int i=0; i<8; i++)

System.out.println(mystack.pop());
}

}

In this program, mystack is a reference to the IntStack interface. Thus, when it refers to ds,
it uses the versions of push() and pop() defined by the DynStack implementation. When it
refers to fs, it uses the versions of push() and pop() defined by FixedStack. As explained,
these determinations are made at run time. Accessing multiple implementations of an interface
through an interface reference variable is the most powerful way that Java achieves run-time
polymorphism.

Variables in Interfaces
You can use interfaces to import shared constants into multiple classes by simply declaring
an interface that contains variables that are initialized to the desired values. When you
include that interface in a class (that is, when you “implement” the interface), all of those
variable names will be in scope as constants. (This is similar to using a header file in C/C++
to create a large number of #defined constants or const declarations.) If an interface contains
no methods, then any class that includes such an interface doesn’t actually implement anything.

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 201

It is as if that class were importing the constant fields into the class name space as final
variables. The next example uses this technique to implement an automated “decision maker”:

import java.util.Random;

interface SharedConstants {
int NO = 0;
int YES = 1;
int MAYBE = 2;
int LATER = 3;
int SOON = 4;
int NEVER = 5;

}

class Question implements SharedConstants {
Random rand = new Random();
int ask() {
int prob = (int) (100 * rand.nextDouble());
if (prob < 30)
return NO; // 30%

else if (prob < 60)
return YES; // 30%

else if (prob < 75)
return LATER; // 15%

else if (prob < 98)
return SOON; // 13%

else
return NEVER; // 2%

}
}

class AskMe implements SharedConstants {
static void answer(int result) {
switch(result) {
case NO:
System.out.println("No");
break;

case YES:
System.out.println("Yes");
break;

case MAYBE:
System.out.println("Maybe");
break;

case LATER:
System.out.println("Later");
break;

case SOON:
System.out.println("Soon");
break;

case NEVER:
System.out.println("Never");
break;

}
}

202 P a r t I : T h e J a v a L a n g u a g e

public static void main(String args[]) {
Question q = new Question();
answer(q.ask());
answer(q.ask());
answer(q.ask());
answer(q.ask());

}
}

Notice that this program makes use of one of Java’s standard classes: Random. This class
provides pseudorandom numbers. It contains several methods that allow you to obtain
random numbers in the form required by your program. In this example, the method
nextDouble() is used. It returns random numbers in the range 0.0 to 1.0.

In this sample program, the two classes, Question and AskMe, both implement the
SharedConstants interface where NO, YES, MAYBE, SOON, LATER, and NEVER are
defined. Inside each class, the code refers to these constants as if each class had defined or
inherited them directly. Here is the output of a sample run of this program. Note that the
results are different each time it is run.

Later
Soon
No
Yes

Interfaces Can Be Extended
One interface can inherit another by use of the keyword extends. The syntax is the same as
for inheriting classes. When a class implements an interface that inherits another interface,
it must provide implementations for all methods defined within the interface inheritance
chain. Following is an example:

// One interface can extend another.
interface A {
void meth1();
void meth2();

}

// B now includes meth1() and meth2() -- it adds meth3().
interface B extends A {
void meth3();

}

// This class must implement all of A and B
class MyClass implements B {
public void meth1() {
System.out.println("Implement meth1().");

}

public void meth2() {
System.out.println("Implement meth2().");

}

public void meth3() {

System.out.println("Implement meth3().");
}

}

class IFExtend {
public static void main(String arg[]) {
MyClass ob = new MyClass();

ob.meth1();
ob.meth2();
ob.meth3();

}
}

As an experiment, you might want to try removing the implementation for meth1() in
MyClass. This will cause a compile-time error. As stated earlier, any class that implements
an interface must implement all methods defined by that interface, including any that are
inherited from other interfaces.

Although the examples we’ve included in this book do not make frequent use of packages
or interfaces, both of these tools are an important part of the Java programming environment.
Virtually all real programs that you write in Java will be contained within packages. A number
will probably implement interfaces as well. It is important, therefore, that you be comfortable
with their usage.

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 203

This page intentionally left blank

10
Exception Handling

This chapter examines Java’s exception-handling mechanism. An exception is an abnormal
condition that arises in a code sequence at run time. In other words, an exception is a
run-time error. In computer languages that do not support exception handling, errors

must be checked and handled manually—typically through the use of error codes, and so
on. This approach is as cumbersome as it is troublesome. Java’s exception handling avoids
these problems and, in the process, brings run-time error management into the object-
oriented world.

Exception-Handling Fundamentals
A Java exception is an object that describes an exceptional (that is, error) condition that has
occurred in a piece of code. When an exceptional condition arises, an object representing
that exception is created and thrown in the method that caused the error. That method may
choose to handle the exception itself, or pass it on. Either way, at some point, the exception
is caught and processed. Exceptions can be generated by the Java run-time system, or they
can be manually generated by your code. Exceptions thrown by Java relate to fundamental
errors that violate the rules of the Java language or the constraints of the Java execution
environment. Manually generated exceptions are typically used to report some error condition
to the caller of a method.

Java exception handling is managed via five keywords: try, catch, throw, throws, and
finally. Briefly, here is how they work. Program statements that you want to monitor for
exceptions are contained within a try block. If an exception occurs within the try block, it is
thrown. Your code can catch this exception (using catch) and handle it in some rational manner.
System-generated exceptions are automatically thrown by the Java run-time system. To
manually throw an exception, use the keyword throw. Any exception that is thrown out of
a method must be specified as such by a throws clause. Any code that absolutely must be
executed after a try block completes is put in a finally block.

This is the general form of an exception-handling block:

try {
// block of code to monitor for errors

}

2 0 5

206 P a r t I : T h e J a v a L a n g u a g e

catch (ExceptionType1 exOb) {
// exception handler for ExceptionType1

}

catch (ExceptionType2 exOb) {
// exception handler for ExceptionType2

}
// ...
finally {

// block of code to be executed after try block ends
}

Here, ExceptionType is the type of exception that has occurred. The remainder of this chapter
describes how to apply this framework.

Exception Types
All exception types are subclasses of the built-in class Throwable. Thus, Throwable is at the
top of the exception class hierarchy. Immediately below Throwable are two subclasses that
partition exceptions into two distinct branches. One branch is headed by Exception. This class
is used for exceptional conditions that user programs should catch. This is also the class that
you will subclass to create your own custom exception types. There is an important subclass
of Exception, called RuntimeException. Exceptions of this type are automatically defined for
the programs that you write and include things such as division by zero and invalid array
indexing.

The other branch is topped by Error, which defines exceptions that are not expected to
be caught under normal circumstances by your program. Exceptions of type Error are used
by the Java run-time system to indicate errors having to do with the run-time environment,
itself. Stack overflow is an example of such an error. This chapter will not be dealing with
exceptions of type Error, because these are typically created in response to catastrophic failures
that cannot usually be handled by your program.

Uncaught Exceptions
Before you learn how to handle exceptions in your program, it is useful to see what happens
when you don’t handle them. This small program includes an expression that intentionally
causes a divide-by-zero error:

class Exc0 {
public static void main(String args[]) {
int d = 0;
int a = 42 / d;

}
}

When the Java run-time system detects the attempt to divide by zero, it constructs a
new exception object and then throws this exception. This causes the execution of Exc0 to

stop, because once an exception has been thrown, it must be caught by an exception handler
and dealt with immediately. In this example, we haven’t supplied any exception handlers of
our own, so the exception is caught by the default handler provided by the Java run-time
system. Any exception that is not caught by your program will ultimately be processed by
the default handler. The default handler displays a string describing the exception, prints a
stack trace from the point at which the exception occurred, and terminates the program.

Here is the exception generated when this example is executed:

java.lang.ArithmeticException: / by zero
at Exc0.main(Exc0.java:4)

Notice how the class name, Exc0; the method name, main; the filename, Exc0.java;
and the line number, 4, are all included in the simple stack trace. Also, notice that the type
of exception thrown is a subclass of Exception called ArithmeticException, which more
specifically describes what type of error happened. As discussed later in this chapter, Java
supplies several built-in exception types that match the various sorts of run-time errors that
can be generated.

The stack trace will always show the sequence of method invocations that led up to
the error. For example, here is another version of the preceding program that introduces the
same error but in a method separate from main():

class Exc1 {
static void subroutine() {
int d = 0;
int a = 10 / d;

}
public static void main(String args[]) {
Exc1.subroutine();

}
}

The resulting stack trace from the default exception handler shows how the entire call
stack is displayed:

java.lang.ArithmeticException: / by zero
at Exc1.subroutine(Exc1.java:4)
at Exc1.main(Exc1.java:7)

As you can see, the bottom of the stack is main’s line 7, which is the call to subroutine(),
which caused the exception at line 4. The call stack is quite useful for debugging, because it
pinpoints the precise sequence of steps that led to the error.

Using try and catch
Although the default exception handler provided by the Java run-time system is useful for
debugging, you will usually want to handle an exception yourself. Doing so provides two
benefits. First, it allows you to fix the error. Second, it prevents the program from automatically
terminating. Most users would be confused (to say the least) if your program stopped

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 207

208 P a r t I : T h e J a v a L a n g u a g e

running and printed a stack trace whenever an error occurred! Fortunately, it is quite easy
to prevent this.

To guard against and handle a run-time error, simply enclose the code that you want
to monitor inside a try block. Immediately following the try block, include a catch clause
that specifies the exception type that you wish to catch. To illustrate how easily this can be
done, the following program includes a try block and a catch clause that processes the
ArithmeticException generated by the division-by-zero error:

class Exc2 {
public static void main(String args[]) {
int d, a;

try { // monitor a block of code.
d = 0;
a = 42 / d;
System.out.println("This will not be printed.");

} catch (ArithmeticException e) { // catch divide-by-zero error
System.out.println("Division by zero.");

}
System.out.println("After catch statement.");

}
}

This program generates the following output:

Division by zero.
After catch statement.

Notice that the call to println() inside the try block is never executed. Once an exception
is thrown, program control transfers out of the try block into the catch block. Put differently,
catch is not “called,” so execution never “returns” to the try block from a catch. Thus, the
line “This will not be printed.” is not displayed. Once the catch statement has executed,
program control continues with the next line in the program following the entire try/catch
mechanism.

A try and its catch statement form a unit. The scope of the catch clause is restricted to
those statements specified by the immediately preceding try statement. A catch statement
cannot catch an exception thrown by another try statement (except in the case of nested try
statements, described shortly). The statements that are protected by try must be surrounded
by curly braces. (That is, they must be within a block.) You cannot use try on a single statement.

The goal of most well-constructed catch clauses should be to resolve the exceptional
condition and then continue on as if the error had never happened. For example, in the next
program each iteration of the for loop obtains two random integers. Those two integers are
divided by each other, and the result is used to divide the value 12345. The final result is put
into a. If either division operation causes a divide-by-zero error, it is caught, the value of a is
set to zero, and the program continues.

// Handle an exception and move on.
import java.util.Random;

class HandleError {
public static void main(String args[]) {

int a=0, b=0, c=0;
Random r = new Random();

for(int i=0; i<32000; i++) {
try {
b = r.nextInt();
c = r.nextInt();
a = 12345 / (b/c);

} catch (ArithmeticException e) {
System.out.println("Division by zero.");
a = 0; // set a to zero and continue

}
System.out.println("a: " + a);

}
}

}

Displaying a Description of an Exception
Throwable overrides the toString() method (defined by Object) so that it returns a string
containing a description of the exception. You can display this description in a println()
statement by simply passing the exception as an argument. For example, the catch block
in the preceding program can be rewritten like this:

catch (ArithmeticException e) {
System.out.println("Exception: " + e);
a = 0; // set a to zero and continue

}

When this version is substituted in the program, and the program is run, each divide-by-
zero error displays the following message:

Exception: java.lang.ArithmeticException: / by zero

While it is of no particular value in this context, the ability to display a description of
an exception is valuable in other circumstances—particularly when you are experimenting
with exceptions or when you are debugging.

Multiple catch Clauses
In some cases, more than one exception could be raised by a single piece of code. To handle
this type of situation, you can specify two or more catch clauses, each catching a different
type of exception. When an exception is thrown, each catch statement is inspected in order,
and the first one whose type matches that of the exception is executed. After one catch
statement executes, the others are bypassed, and execution continues after the try/catch
block. The following example traps two different exception types:

// Demonstrate multiple catch statements.
class MultiCatch {
public static void main(String args[]) {
try {

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 209

int a = args.length;
System.out.println("a = " + a);
int b = 42 / a;
int c[] = { 1 };
c[42] = 99;

} catch(ArithmeticException e) {
System.out.println("Divide by 0: " + e);

} catch(ArrayIndexOutOfBoundsException e) {
System.out.println("Array index oob: " + e);

}
System.out.println("After try/catch blocks.");

}
}

This program will cause a division-by-zero exception if it is started with no command-
line arguments, since a will equal zero. It will survive the division if you provide a
command-line argument, setting a to something larger than zero. But it will cause an
ArrayIndexOutOfBoundsException, since the int array c has a length of 1, yet the program
attempts to assign a value to c[42].

Here is the output generated by running it both ways:

C:\>java MultiCatch
a = 0
Divide by 0: java.lang.ArithmeticException: / by zero
After try/catch blocks.

C:\>java MultiCatch TestArg
a = 1
Array index oob: java.lang.ArrayIndexOutOfBoundsException:42
After try/catch blocks.

When you use multiple catch statements, it is important to remember that exception
subclasses must come before any of their superclasses. This is because a catch statement
that uses a superclass will catch exceptions of that type plus any of its subclasses. Thus, a
subclass would never be reached if it came after its superclass. Further, in Java, unreachable
code is an error. For example, consider the following program:

/* This program contains an error.

A subclass must come before its superclass in
a series of catch statements. If not,
unreachable code will be created and a
compile-time error will result.

*/
class SuperSubCatch {
public static void main(String args[]) {
try {
int a = 0;
int b = 42 / a;

} catch(Exception e) {

210 P a r t I : T h e J a v a L a n g u a g e

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 211

System.out.println("Generic Exception catch.");
}
/* This catch is never reached because

ArithmeticException is a subclass of Exception. */
catch(ArithmeticException e) { // ERROR - unreachable
System.out.println("This is never reached.");

}
}

}

If you try to compile this program, you will receive an error message stating that the
second catch statement is unreachable because the exception has already been caught. Since
ArithmeticException is a subclass of Exception, the first catch statement will handle all
Exception-based errors, including ArithmeticException. This means that the second catch
statement will never execute. To fix the problem, reverse the order of the catch statements.

Nested try Statements
The try statement can be nested. That is, a try statement can be inside the block of another try.
Each time a try statement is entered, the context of that exception is pushed on the stack. If an
inner try statement does not have a catch handler for a particular exception, the stack is
unwound and the next try statement’s catch handlers are inspected for a match. This continues
until one of the catch statements succeeds, or until all of the nested try statements are exhausted.
If no catch statement matches, then the Java run-time system will handle the exception. Here
is an example that uses nested try statements:

// An example of nested try statements.
class NestTry {
public static void main(String args[]) {
try {
int a = args.length;

/* If no command-line args are present,
the following statement will generate
a divide-by-zero exception. */

int b = 42 / a;

System.out.println("a = " + a);

try { // nested try block
/* If one command-line arg is used,

then a divide-by-zero exception
will be generated by the following code. */

if(a==1) a = a/(a-a); // division by zero

/* If two command-line args are used,
then generate an out-of-bounds exception. */

if(a==2) {
int c[] = { 1 };

212 P a r t I : T h e J a v a L a n g u a g e

c[42] = 99; // generate an out-of-bounds exception
}

} catch(ArrayIndexOutOfBoundsException e) {
System.out.println("Array index out-of-bounds: " + e);

}

} catch(ArithmeticException e) {
System.out.println("Divide by 0: " + e);

}
}

}

As you can see, this program nests one try block within another. The program works as
follows. When you execute the program with no command-line arguments, a divide-by-zero
exception is generated by the outer try block. Execution of the program with one command-line
argument generates a divide-by-zero exception from within the nested try block. Since the
inner block does not catch this exception, it is passed on to the outer try block, where it is
handled. If you execute the program with two command-line arguments, an array boundary
exception is generated from within the inner try block. Here are sample runs that illustrate
each case:

C:\>java NestTry
Divide by 0: java.lang.ArithmeticException: / by zero

C:\>java NestTry One
a = 1
Divide by 0: java.lang.ArithmeticException: / by zero

C:\>java NestTry One Two
a = 2
Array index out-of-bounds:
java.lang.ArrayIndexOutOfBoundsException:42

Nesting of try statements can occur in less obvious ways when method calls are involved.
For example, you can enclose a call to a method within a try block. Inside that method is
another try statement. In this case, the try within the method is still nested inside the outer try
block, which calls the method. Here is the previous program recoded so that the nested
try block is moved inside the method nesttry():

/* Try statements can be implicitly nested via
calls to methods. */

class MethNestTry {
static void nesttry(int a) {
try { // nested try block
/* If one command-line arg is used,

then a divide-by-zero exception
will be generated by the following code. */

if(a==1) a = a/(a-a); // division by zero

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 213

/* If two command-line args are used,
then generate an out-of-bounds exception. */

if(a==2) {
int c[] = { 1 };
c[42] = 99; // generate an out-of-bounds exception

}
} catch(ArrayIndexOutOfBoundsException e) {
System.out.println("Array index out-of-bounds: " + e);

}
}

public static void main(String args[]) {
try {
int a = args.length;

/* If no command-line args are present,
the following statement will generate
a divide-by-zero exception. */

int b = 42 / a;
System.out.println("a = " + a);

nesttry(a);
} catch(ArithmeticException e) {
System.out.println("Divide by 0: " + e);

}
}

}

The output of this program is identical to that of the preceding example.

throw
So far, you have only been catching exceptions that are thrown by the Java run-time system.
However, it is possible for your program to throw an exception explicitly, using the throw
statement. The general form of throw is shown here:

throw ThrowableInstance;

Here, ThrowableInstance must be an object of type Throwable or a subclass of Throwable.
Primitive types, such as int or char, as well as non-Throwable classes, such as String and
Object, cannot be used as exceptions. There are two ways you can obtain a Throwable object:
using a parameter in a catch clause, or creating one with the new operator.

The flow of execution stops immediately after the throw statement; any subsequent
statements are not executed. The nearest enclosing try block is inspected to see if it has a
catch statement that matches the type of exception. If it does find a match, control is
transferred to that statement. If not, then the next enclosing try statement is inspected, and
so on. If no matching catch is found, then the default exception handler halts the program
and prints the stack trace.

Here is a sample program that creates and throws an exception. The handler that catches
the exception rethrows it to the outer handler.

// Demonstrate throw.
class ThrowDemo {
static void demoproc() {
try {
throw new NullPointerException("demo");

} catch(NullPointerException e) {
System.out.println("Caught inside demoproc.");
throw e; // rethrow the exception

}
}

public static void main(String args[]) {
try {
demoproc();

} catch(NullPointerException e) {
System.out.println("Recaught: " + e);

}
}

}

This program gets two chances to deal with the same error. First, main() sets up an exception
context and then calls demoproc(). The demoproc() method then sets up another exception-
handling context and immediately throws a new instance of NullPointerException, which
is caught on the next line. The exception is then rethrown. Here is the resulting output:

Caught inside demoproc.
Recaught: java.lang.NullPointerException: demo

The program also illustrates how to create one of Java’s standard exception objects. Pay
close attention to this line:

throw new NullPointerException("demo");

Here, new is used to construct an instance of NullPointerException. Many of Java’s built-
in run-time exceptions have at least two constructors: one with no parameter and one that
takes a string parameter. When the second form is used, the argument specifies a string that
describes the exception. This string is displayed when the object is used as an argument to
print() or println(). It can also be obtained by a call to getMessage(), which is defined by
Throwable.

throws
If a method is capable of causing an exception that it does not handle, it must specify this
behavior so that callers of the method can guard themselves against that exception. You do
this by including a throws clause in the method’s declaration. A throws clause lists the types
of exceptions that a method might throw. This is necessary for all exceptions, except those of

214 P a r t I : T h e J a v a L a n g u a g e

type Error or RuntimeException, or any of their subclasses. All other exceptions that a method
can throw must be declared in the throws clause. If they are not, a compile-time error will result.

This is the general form of a method declaration that includes a throws clause:

type method-name(parameter-list) throws exception-list
{

// body of method
}

Here, exception-list is a comma-separated list of the exceptions that a method can throw.
Following is an example of an incorrect program that tries to throw an exception that it

does not catch. Because the program does not specify a throws clause to declare this fact, the
program will not compile.

// This program contains an error and will not compile.
class ThrowsDemo {
static void throwOne() {
System.out.println("Inside throwOne.");
throw new IllegalAccessException("demo");

}
public static void main(String args[]) {
throwOne();

}
}

To make this example compile, you need to make two changes. First, you need to declare
that throwOne() throws IllegalAccessException. Second, main() must define a try/catch
statement that catches this exception.

The corrected example is shown here:

// This is now correct.
class ThrowsDemo {
static void throwOne() throws IllegalAccessException {
System.out.println("Inside throwOne.");
throw new IllegalAccessException("demo");

}
public static void main(String args[]) {
try {
throwOne();

} catch (IllegalAccessException e) {
System.out.println("Caught " + e);

}
}

}

Here is the output generated by running this example program:

inside throwOne
caught java.lang.IllegalAccessException: demo

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 215

216 P a r t I : T h e J a v a L a n g u a g e

finally
When exceptions are thrown, execution in a method takes a rather abrupt, nonlinear path
that alters the normal flow through the method. Depending upon how the method is coded,
it is even possible for an exception to cause the method to return prematurely. This could
be a problem in some methods. For example, if a method opens a file upon entry and
closes it upon exit, then you will not want the code that closes the file to be bypassed
by the exception-handling mechanism. The finally keyword is designed to address this
contingency.

finally creates a block of code that will be executed after a try/catch block has
completed and before the code following the try/catch block. The finally block will
execute whether or not an exception is thrown. If an exception is thrown, the finally
block will execute even if no catch statement matches the exception. Any time a method
is about to return to the caller from inside a try/catch block, via an uncaught exception or
an explicit return statement, the finally clause is also executed just before the method
returns. This can be useful for closing file handles and freeing up any other resources that
might have been allocated at the beginning of a method with the intent of disposing of them
before returning. The finally clause is optional. However, each try statement requires at
least one catch or a finally clause.

Here is an example program that shows three methods that exit in various ways, none
without executing their finally clauses:

// Demonstrate finally.
class FinallyDemo {
// Through an exception out of the method.
static void procA() {
try {
System.out.println("inside procA");
throw new RuntimeException("demo");

} finally {
System.out.println("procA's finally");

}
}

// Return from within a try block.
static void procB() {
try {
System.out.println("inside procB");
return;

} finally {
System.out.println("procB's finally");

}
}

// Execute a try block normally.
static void procC() {
try {
System.out.println("inside procC");

} finally {

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 217

System.out.println("procC's finally");
}

}

public static void main(String args[]) {
try {
procA();

} catch (Exception e) {
System.out.println("Exception caught");

}
procB();
procC();

}
}

In this example, procA() prematurely breaks out of the try by throwing an exception.
The finally clause is executed on the way out. procB()’s try statement is exited via a return
statement. The finally clause is executed before procB() returns. In procC(), the try statement
executes normally, without error. However, the finally block is still executed.

REMEMBEREMEMBER If a finally block is associated with a try, the finally block will be executed upon
conclusion of the try.

Here is the output generated by the preceding program:

inside procA
procA’s finally
Exception caught
inside procB
procB’s finally
inside procC
procC’s finally

Java’s Built-in Exceptions
Inside the standard package java.lang, Java defines several exception classes. A few have
been used by the preceding examples. The most general of these exceptions are subclasses
of the standard type RuntimeException. As previously explained, these exceptions need
not be included in any method’s throws list. In the language of Java, these are called
unchecked exceptions because the compiler does not check to see if a method handles or
throws these exceptions. The unchecked exceptions defined in java.lang are listed in
Table 10-1. Table 10-2 lists those exceptions defined by java.lang that must be included
in a method’s throws list if that method can generate one of these exceptions and does
not handle it itself. These are called checked exceptions. Java defines several other types
of exceptions that relate to its various class libraries.

218 P a r t I : T h e J a v a L a n g u a g e

Exception Meaning

ArithmeticException Arithmetic error, such as divide-by-zero.

ArrayIndexOutOfBoundsException Array index is out-of-bounds.

ArrayStoreException Assignment to an array element of an incompatible type.

ClassCastException Invalid cast.

EnumConstantNotPresentException An attempt is made to use an undefined enumeration value.

IllegalArgumentException Illegal argument used to invoke a method.

IllegalMonitorStateException Illegal monitor operation, such as waiting on an unlocked
thread.

IllegalStateException Environment or application is in incorrect state.

IllegalThreadStateException Requested operation not compatible with current thread
state.

IndexOutOfBoundsException Some type of index is out-of-bounds.

NegativeArraySizeException Array created with a negative size.

NullPointerException Invalid use of a null reference.

NumberFormatException Invalid conversion of a string to a numeric format.

SecurityException Attempt to violate security.

StringIndexOutOfBounds Attempt to index outside the bounds of a string.

TypeNotPresentException Type not found.

UnsupportedOperationException An unsupported operation was encountered.

TABLE 10-1 Java’s Unchecked RuntimeException Subclasses Defined in java.lang

Exception Meaning

ClassNotFoundException Class not found.

CloneNotSupportedException Attempt to clone an object that does not implement the Cloneable
interface.

IllegalAccessException Access to a class is denied.

InstantiationException Attempt to create an object of an abstract class or interface.

InterruptedException One thread has been interrupted by another thread.

NoSuchFieldException A requested field does not exist.

NoSuchMethodException A requested method does not exist.

TABLE 10-2 Java’s Checked Exceptions Defined in java.lang

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 219

Creating Your Own Exception Subclasses
Although Java’s built-in exceptions handle most common errors, you will probably want
to create your own exception types to handle situations specific to your applications. This
is quite easy to do: just define a subclass of Exception (which is, of course, a subclass of
Throwable). Your subclasses don’t need to actually implement anything—it is their existence
in the type system that allows you to use them as exceptions.

The Exception class does not define any methods of its own. It does, of course, inherit
those methods provided by Throwable. Thus, all exceptions, including those that you create,
have the methods defined by Throwable available to them. They are shown in Table 10-3.

Method Description

Throwable fillInStackTrace() Returns a Throwable object that contains a completed
stack trace. This object can be rethrown.

Throwable getCause() Returns the exception that underlies the current
exception. If there is no underlying exception, null
is returned.

String getLocalizedMessage() Returns a localized description of the exception.

String getMessage() Returns a description of the exception.

StackTraceElement[] getStackTrace() Returns an array that contains the stack trace, one
element at a time, as an array of StackTraceElement.
The method at the top of the stack is the last method
called before the exception was thrown. This method
is found in the first element of the array. The
StackTraceElement class gives your program access
to information about each element in the trace, such
as its method name.

Throwable initCause(Throwable
causeExc)

Associates causeExc with the invoking exception as a
cause of the invoking exception. Returns a reference
to the exception.

void printStackTrace() Displays the stack trace.

void printStackTrace(PrintStream
stream)

Sends the stack trace to the specified stream.

void printStackTrace(PrintWriter
stream)

Sends the stack trace to the specified stream.

void setStackTrace(StackTraceElement
elements[])

Sets the stack trace to the elements passed in
elements. This method is for specialized applications,
not normal use.

String toString() Returns a String object containing a description of the
exception. This method is called by println() when
outputting a Throwable object.

TABLE 10-3 The Methods Defined by Throwable

220 P a r t I : T h e J a v a L a n g u a g e

You may also wish to override one or more of these methods in exception classes that you
create.

Exception defines four constructors. Two were added by JDK 1.4 to support chained
exceptions, described in the next section. The other two are shown here:

Exception()

Exception(String msg)

The first form creates an exception that has no description. The second form lets you specify
a description of the exception.

Although specifying a description when an exception is created is often useful, sometimes
it is better to override toString(). Here’s why: The version of toString() defined by Throwable
(and inherited by Exception) first displays the name of the exception followed by a colon, which
is then followed by your description. By overriding toString(), you can prevent the exception
name and colon from being displayed. This makes for a cleaner output, which is desirable in
some cases.

The following example declares a new subclass of Exception and then uses that subclass
to signal an error condition in a method. It overrides the toString() method, allowing a
carefully tailored description of the exception to be displayed.

// This program creates a custom exception type.
class MyException extends Exception {
private int detail;

MyException(int a) {
detail = a;

}

public String toString() {
return "MyException[" + detail + "]";

}
}

class ExceptionDemo {
static void compute(int a) throws MyException {
System.out.println("Called compute(" + a + ")");
if(a > 10)
throw new MyException(a);

System.out.println("Normal exit");
}

public static void main(String args[]) {
try {
compute(1);
compute(20);

} catch (MyException e) {
System.out.println("Caught " + e);

}
}

}

This example defines a subclass of Exception called MyException. This subclass is quite
simple: it has only a constructor plus an overloaded toString() method that displays the

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 221

value of the exception. The ExceptionDemo class defines a method named compute() that
throws a MyException object. The exception is thrown when compute()’s integer parameter
is greater than 10. The main() method sets up an exception handler for MyException, then
calls compute() with a legal value (less than 10) and an illegal one to show both paths through
the code. Here is the result:

Called compute(1)
Normal exit
Called compute(20)
Caught MyException[20]

Chained Exceptions
Beginning with JDK 1.4, a new feature has been incorporated into the exception subsystem:
chained exceptions. The chained exception feature allows you to associate another exception
with an exception. This second exception describes the cause of the first exception. For example,
imagine a situation in which a method throws an ArithmeticException because of an attempt
to divide by zero. However, the actual cause of the problem was that an I/O error occurred,
which caused the divisor to be set improperly. Although the method must certainly throw
an ArithmeticException, since that is the error that occurred, you might also want to let the
calling code know that the underlying cause was an I/O error. Chained exceptions let you
handle this, and any other situation in which layers of exceptions exist.

To allow chained exceptions, two constructors and two methods were added to Throwable.
The constructors are shown here:

Throwable(Throwable causeExc)
Throwable(String msg, Throwable causeExc)

In the first form, causeExc is the exception that causes the current exception. That is, causeExc
is the underlying reason that an exception occurred. The second form allows you to specify
a description at the same time that you specify a cause exception. These two constructors
have also been added to the Error, Exception, and RuntimeException classes.

The chained exception methods added to Throwable are getCause() and initCause().
These methods are shown in Table 10-3 and are repeated here for the sake of discussion.

Throwable getCause()
Throwable initCause(Throwable causeExc)

The getCause() method returns the exception that underlies the current exception. If there
is no underlying exception, null is returned. The initCause() method associates causeExc with
the invoking exception and returns a reference to the exception. Thus, you can associate a
cause with an exception after the exception has been created. However, the cause exception
can be set only once. Thus, you can call initCause() only once for each exception object.
Furthermore, if the cause exception was set by a constructor, then you can’t set it again
using initCause(). In general, initCause() is used to set a cause for legacy exception classes
that don’t support the two additional constructors described earlier.

Here is an example that illustrates the mechanics of handling chained exceptions:

// Demonstrate exception chaining.
class ChainExcDemo {
static void demoproc() {

// create an exception
NullPointerException e =
new NullPointerException("top layer");

// add a cause
e.initCause(new ArithmeticException("cause"));

throw e;
}

public static void main(String args[]) {
try {
demoproc();

} catch(NullPointerException e) {
// display top level exception
System.out.println("Caught: " + e);

// display cause exception
System.out.println("Original cause: " +

e.getCause());
}

}
}

The output from the program is shown here:

Caught: java.lang.NullPointerException: top layer
Original cause: java.lang.ArithmeticException: cause

In this example, the top-level exception is NullPointerException. To it is added a cause
exception, ArithmeticException. When the exception is thrown out of demoproc(), it is
caught by main(). There, the top-level exception is displayed, followed by the underlying
exception, which is obtained by calling getCause().

Chained exceptions can be carried on to whatever depth is necessary. Thus, the cause
exception can, itself, have a cause. Be aware that overly long chains of exceptions may
indicate poor design.

Chained exceptions are not something that every program will need. However, in cases
in which knowledge of an underlying cause is useful, they offer an elegant solution.

Using Exceptions
Exception handling provides a powerful mechanism for controlling complex programs that
have many dynamic run-time characteristics. It is important to think of try, throw, and catch
as clean ways to handle errors and unusual boundary conditions in your program’s logic.
Unlike some other languages in which error return codes are used to indicate failure, Java
uses exceptions. Thus, when a method can fail, have it throw an exception. This is a cleaner
way to handle failure modes.

One last point: Java’s exception-handling statements should not be considered a general
mechanism for nonlocal branching. If you do so, it will only confuse your code and make it
hard to maintain.

222 P a r t I : T h e J a v a L a n g u a g e

	Part I: The Java Language
	9 Packages and Interfaces
	Packages
	Access Protection
	Importing Packages
	Interfaces

	10 Exception Handling
	Exception-Handling Fundamentals
	Exception Types
	Uncaught Exceptions
	Using try and catch
	Multiple catch Clauses
	Nested try Statements
	throw
	throws
	finally
	Java’s Built-in Exceptions
	Creating Your Own Exception Subclasses
	Chained Exceptions
	Using Exceptions

