
6
Introducing Classes

The class is at the core of Java. It is the logical construct upon which the entire Java
language is built because it defines the shape and nature of an object. As such, the
class forms the basis for object-oriented programming in Java. Any concept you wish

to implement in a Java program must be encapsulated within a class.
Because the class is so fundamental to Java, this and the next few chapters will be devoted

to it. Here, you will be introduced to the basic elements of a class and learn how a class can be
used to create objects. You will also learn about methods, constructors, and the this keyword.

Class Fundamentals
Classes have been used since the beginning of this book. However, until now, only the most
rudimentary form of a class has been used. The classes created in the preceding chapters
primarily exist simply to encapsulate the main() method, which has been used to demonstrate
the basics of the Java syntax. As you will see, classes are substantially more powerful than the
limited ones presented so far.

Perhaps the most important thing to understand about a class is that it defines a new data
type. Once defined, this new type can be used to create objects of that type. Thus, a class is
a template for an object, and an object is an instance of a class. Because an object is an instance
of a class, you will often see the two words object and instance used interchangeably.

The General Form of a Class
When you define a class, you declare its exact form and nature. You do this by specifying the
data that it contains and the code that operates on that data. While very simple classes may
contain only code or only data, most real-world classes contain both. As you will see, a class’
code defines the interface to its data.

A class is declared by use of the class keyword. The classes that have been used up to this
point are actually very limited examples of its complete form. Classes can (and usually do)
get much more complex. A simplified general form of a class definition is shown here:

class classname {
type instance-variable1;
type instance-variable2;

1 0 5

// ...
type instance-variableN;

type methodname1(parameter-list) {
// body of method

}
type methodname2(parameter-list) {

// body of method
}
// ...
type methodnameN(parameter-list) {

// body of method
}

}

The data, or variables, defined within a class are called instance variables. The code is
contained within methods. Collectively, the methods and variables defined within a class are
called members of the class. In most classes, the instance variables are acted upon and accessed
by the methods defined for that class. Thus, as a general rule, it is the methods that determine
how a class’ data can be used.

Variables defined within a class are called instance variables because each instance of the
class (that is, each object of the class) contains its own copy of these variables. Thus, the data
for one object is separate and unique from the data for another. We will come back to this point
shortly, but it is an important concept to learn early.

All methods have the same general form as main(), which we have been using thus far.
However, most methods will not be specified as static or public. Notice that the general form
of a class does not specify a main() method. Java classes do not need to have a main() method.
You only specify one if that class is the starting point for your program. Further, applets don’t
require a main() method at all.

NOTEOTE C++ programmers will notice that the class declaration and the implementation of the
methods are stored in the same place and not defined separately. This sometimes makes for very
large .java files, since any class must be entirely defined in a single source file. This design feature
was built into Java because it was felt that in the long run, having specification, declaration, and
implementation all in one place makes for code that is easier to maintain.

A Simple Class
Let’s begin our study of the class with a simple example. Here is a class called Box that defines
three instance variables: width, height, and depth. Currently, Box does not contain any
methods (but some will be added soon).

class Box {
double width;
double height;
double depth;

}

106 P a r t I : T h e J a v a L a n g u a g e

As stated, a class defines a new type of data. In this case, the new data type is called Box.
You will use this name to declare objects of type Box. It is important to remember that a class
declaration only creates a template; it does not create an actual object. Thus, the preceding
code does not cause any objects of type Box to come into existence.

To actually create a Box object, you will use a statement like the following:

Box mybox = new Box(); // create a Box object called mybox

After this statement executes, mybox will be an instance of Box. Thus, it will have “physical”
reality. For the moment, don’t worry about the details of this statement.

As mentioned earlier, each time you create an instance of a class, you are creating an object
that contains its own copy of each instance variable defined by the class. Thus, every Box
object will contain its own copies of the instance variables width, height, and depth. To
access these variables, you will use the dot (.) operator. The dot operator links the name of the
object with the name of an instance variable. For example, to assign the width variable of
mybox the value 100, you would use the following statement:

mybox.width = 100;

This statement tells the compiler to assign the copy of width that is contained within the
mybox object the value of 100. In general, you use the dot operator to access both the instance
variables and the methods within an object.

Here is a complete program that uses the Box class:

/* A program that uses the Box class.

Call this file BoxDemo.java
*/
class Box {
double width;
double height;
double depth;

}

// This class declares an object of type Box.
class BoxDemo {
public static void main(String args[]) {
Box mybox = new Box();
double vol;

// assign values to mybox's instance variables
mybox.width = 10;
mybox.height = 20;
mybox.depth = 15;

// compute volume of box
vol = mybox.width * mybox.height * mybox.depth;

System.out.println("Volume is " + vol);
}

}

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 107

You should call the file that contains this program BoxDemo.java, because the main() method
is in the class called BoxDemo, not the class called Box. When you compile this program, you
will find that two .class files have been created, one for Box and one for BoxDemo. The Java
compiler automatically puts each class into its own .class file. It is not necessary for both the
Box and the BoxDemo class to actually be in the same source file. You could put each class
in its own file, called Box.java and BoxDemo.java, respectively.

To run this program, you must execute BoxDemo.class. When you do, you will see the
following output:

Volume is 3000.0

As stated earlier, each object has its own copies of the instance variables. This means that
if you have two Box objects, each has its own copy of depth, width, and height. It is important
to understand that changes to the instance variables of one object have no effect on the instance
variables of another. For example, the following program declares two Box objects:

// This program declares two Box objects.

class Box {
double width;
double height;
double depth;

}

class BoxDemo2 {
public static void main(String args[]) {
Box mybox1 = new Box();
Box mybox2 = new Box();
double vol;

// assign values to mybox1's instance variables
mybox1.width = 10;
mybox1.height = 20;
mybox1.depth = 15;

/* assign different values to mybox2's
instance variables */

mybox2.width = 3;
mybox2.height = 6;
mybox2.depth = 9;

// compute volume of first box
vol = mybox1.width * mybox1.height * mybox1.depth;
System.out.println("Volume is " + vol);

// compute volume of second box
vol = mybox2.width * mybox2.height * mybox2.depth;
System.out.println("Volume is " + vol);

}
}

108 P a r t I : T h e J a v a L a n g u a g e

The output produced by this program is shown here:

Volume is 3000.0
Volume is 162.0

As you can see, mybox1’s data is completely separate from the data contained in mybox2.

Declaring Objects
As just explained, when you create a class, you are creating a new data type. You can use this
type to declare objects of that type. However, obtaining objects of a class is a two-step process.
First, you must declare a variable of the class type. This variable does not define an object.
Instead, it is simply a variable that can refer to an object. Second, you must acquire an actual,
physical copy of the object and assign it to that variable. You can do this using the new operator.
The new operator dynamically allocates (that is, allocates at run time) memory for an object
and returns a reference to it. This reference is, more or less, the address in memory of the object
allocated by new. This reference is then stored in the variable. Thus, in Java, all class objects
must be dynamically allocated. Let’s look at the details of this procedure.

In the preceding sample programs, a line similar to the following is used to declare an
object of type Box:

Box mybox = new Box();

This statement combines the two steps just described. It can be rewritten like this to show
each step more clearly:

Box mybox; // declare reference to object
mybox = new Box(); // allocate a Box object

The first line declares mybox as a reference to an object of type Box. After this line executes,
mybox contains the value null, which indicates that it does not yet point to an actual object.
Any attempt to use mybox at this point will result in a compile-time error. The next line
allocates an actual object and assigns a reference to it to mybox. After the second line executes,
you can use mybox as if it were a Box object. But in reality, mybox simply holds the memory
address of the actual Box object. The effect of these two lines of code is depicted in Figure 6-1.

NOTEOTE Those readers familiar with C/C++ have probably noticed that object references appear to be
similar to pointers. This suspicion is, essentially, correct. An object reference is similar to a memory
pointer. The main difference—and the key to Java’s safety—is that you cannot manipulate references
as you can actual pointers. Thus, you cannot cause an object reference to point to an arbitrary
memory location or manipulate it like an integer.

A Closer Look at new
As just explained, the new operator dynamically allocates memory for an object. It has this
general form:

class-var = new classname();

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 109

Here, class-var is a variable of the class type being created. The classname is the name of the
class that is being instantiated. The class name followed by parentheses specifies the constructor
for the class. A constructor defines what occurs when an object of a class is created. Constructors
are an important part of all classes and have many significant attributes. Most real-world
classes explicitly define their own constructors within their class definition. However, if no
explicit constructor is specified, then Java will automatically supply a default constructor.
This is the case with Box. For now, we will use the default constructor. Soon, you will see
how to define your own constructors.

At this point, you might be wondering why you do not need to use new for such things
as integers or characters. The answer is that Java’s primitive types are not implemented as
objects. Rather, they are implemented as “normal” variables. This is done in the interest of
efficiency. As you will see, objects have many features and attributes that require Java to treat
them differently than it treats the primitive types. By not applying the same overhead to the
primitive types that applies to objects, Java can implement the primitive types more efficiently.
Later, you will see object versions of the primitive types that are available for your use in
those situations in which complete objects of these types are needed.

It is important to understand that new allocates memory for an object during run time.
The advantage of this approach is that your program can create as many or as few objects as
it needs during the execution of your program. However, since memory is finite, it is possible
that new will not be able to allocate memory for an object because insufficient memory exists.
If this happens, a run-time exception will occur. (You will learn how to handle this and other
exceptions in Chapter 10.) For the sample programs in this book, you won’t need to worry
about running out of memory, but you will need to consider this possibility in real-world
programs that you write.

Let’s once again review the distinction between a class and an object. A class creates a
new data type that can be used to create objects. That is, a class creates a logical framework
that defines the relationship between its members. When you declare an object of a class, you
are creating an instance of that class. Thus, a class is a logical construct. An object has physical
reality. (That is, an object occupies space in memory.) It is important to keep this distinction
clearly in mind.

110 P a r t I : T h e J a v a L a n g u a g e

FIGURE 6-1
Declaring an object
of type Box

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 111

Assigning Object Reference Variables
Object reference variables act differently than you might expect when an assignment takes
place. For example, what do you think the following fragment does?

Box b1 = new Box();
Box b2 = b1;

You might think that b2 is being assigned a reference to a copy of the object referred to by
b1. That is, you might think that b1 and b2 refer to separate and distinct objects. However,
this would be wrong. Instead, after this fragment executes, b1 and b2 will both refer to the
same object. The assignment of b1 to b2 did not allocate any memory or copy any part of the
original object. It simply makes b2 refer to the same object as does b1. Thus, any changes
made to the object through b2 will affect the object to which b1 is referring, since they are the
same object.

This situation is depicted here:

Although b1 and b2 both refer to the same object, they are not linked in any other way.
For example, a subsequent assignment to b1 will simply unhook b1 from the original object
without affecting the object or affecting b2. For example:

Box b1 = new Box();
Box b2 = b1;
// ...
b1 = null;

Here, b1 has been set to null, but b2 still points to the original object.

REMEMBEREMEMBER When you assign one object reference variable to another object reference variable,
you are not creating a copy of the object, you are only making a copy of the reference.

Introducing Methods
As mentioned at the beginning of this chapter, classes usually consist of two things: instance
variables and methods. The topic of methods is a large one because Java gives them so much
power and flexibility. In fact, much of the next chapter is devoted to methods. However, there
are some fundamentals that you need to learn now so that you can begin to add methods to
your classes.

This is the general form of a method:

type name(parameter-list) {
// body of method

}

Here, type specifies the type of data returned by the method. This can be any valid type,
including class types that you create. If the method does not return a value, its return type
must be void. The name of the method is specified by name. This can be any legal identifier
other than those already used by other items within the current scope. The parameter-list is a
sequence of type and identifier pairs separated by commas. Parameters are essentially variables
that receive the value of the arguments passed to the method when it is called. If the method
has no parameters, then the parameter list will be empty.

Methods that have a return type other than void return a value to the calling routine using
the following form of the return statement:

return value;

Here, value is the value returned.
In the next few sections, you will see how to create various types of methods, including

those that take parameters and those that return values.

Adding a Method to the Box Class
Although it is perfectly fine to create a class that contains only data, it rarely happens. Most
of the time, you will use methods to access the instance variables defined by the class. In fact,
methods define the interface to most classes. This allows the class implementor to hide the
specific layout of internal data structures behind cleaner method abstractions. In addition
to defining methods that provide access to data, you can also define methods that are used
internally by the class itself.

Let’s begin by adding a method to the Box class. It may have occurred to you while looking
at the preceding programs that the computation of a box’s volume was something that was
best handled by the Box class rather than the BoxDemo class. After all, since the volume of
a box is dependent upon the size of the box, it makes sense to have the Box class compute it.
To do this, you must add a method to Box, as shown here:

// This program includes a method inside the box class.

class Box {
double width;
double height;
double depth;

// display volume of a box
void volume() {
System.out.print("Volume is ");
System.out.println(width * height * depth);

}
}

112 P a r t I : T h e J a v a L a n g u a g e

class BoxDemo3 {
public static void main(String args[]) {
Box mybox1 = new Box();
Box mybox2 = new Box();

// assign values to mybox1's instance variables
mybox1.width = 10;
mybox1.height = 20;
mybox1.depth = 15;

/* assign different values to mybox2's
instance variables */

mybox2.width = 3;
mybox2.height = 6;
mybox2.depth = 9;

// display volume of first box
mybox1.volume();

// display volume of second box
mybox2.volume();

}
}

This program generates the following output, which is the same as the previous version.

Volume is 3000.0
Volume is 162.0

Look closely at the following two lines of code:

mybox1.volume();
mybox2.volume();

The first line here invokes the volume() method on mybox1. That is, it calls volume()
relative to the mybox1 object, using the object’s name followed by the dot operator. Thus,
the call to mybox1.volume() displays the volume of the box defined by mybox1, and the
call to mybox2.volume() displays the volume of the box defined by mybox2. Each time
volume() is invoked, it displays the volume for the specified box.

If you are unfamiliar with the concept of calling a method, the following discussion will
help clear things up. When mybox1.volume() is executed, the Java run-time system transfers
control to the code defined inside volume(). After the statements inside volume() have
executed, control is returned to the calling routine, and execution resumes with the line of
code following the call. In the most general sense, a method is Java’s way of implementing
subroutines.

There is something very important to notice inside the volume() method: the instance
variables width, height, and depth are referred to directly, without preceding them with an
object name or the dot operator. When a method uses an instance variable that is defined by
its class, it does so directly, without explicit reference to an object and without use of the dot
operator. This is easy to understand if you think about it. A method is always invoked relative
to some object of its class. Once this invocation has occurred, the object is known. Thus, within

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 113

114 P a r t I : T h e J a v a L a n g u a g e

a method, there is no need to specify the object a second time. This means that width, height,
and depth inside volume() implicitly refer to the copies of those variables found in the object
that invokes volume().

Let’s review: When an instance variable is accessed by code that is not part of the class
in which that instance variable is defined, it must be done through an object, by use of the
dot operator. However, when an instance variable is accessed by code that is part of the same
class as the instance variable, that variable can be referred to directly. The same thing applies
to methods.

Returning a Value
While the implementation of volume() does move the computation of a box’s volume inside
the Box class where it belongs, it is not the best way to do it. For example, what if another
part of your program wanted to know the volume of a box, but not display its value? A better
way to implement volume() is to have it compute the volume of the box and return the result
to the caller. The following example, an improved version of the preceding program, does
just that:

// Now, volume() returns the volume of a box.

class Box {
double width;
double height;
double depth;

// compute and return volume
double volume() {
return width * height * depth;

}
}

class BoxDemo4 {
public static void main(String args[]) {
Box mybox1 = new Box();
Box mybox2 = new Box();
double vol;

// assign values to mybox1's instance variables
mybox1.width = 10;
mybox1.height = 20;
mybox1.depth = 15;

/* assign different values to mybox2's
instance variables */

mybox2.width = 3;
mybox2.height = 6;
mybox2.depth = 9;

// get volume of first box
vol = mybox1.volume();
System.out.println("Volume is " + vol);

// get volume of second box
vol = mybox2.volume();
System.out.println("Volume is " + vol);

}
}

As you can see, when volume() is called, it is put on the right side of an assignment
statement. On the left is a variable, in this case vol, that will receive the value returned by
volume(). Thus, after

vol = mybox1.volume();

executes, the value of mybox1.volume() is 3,000 and this value then is stored in vol.
There are two important things to understand about returning values:

• The type of data returned by a method must be compatible with the return type
specified by the method. For example, if the return type of some method is boolean,
you could not return an integer.

• The variable receiving the value returned by a method (such as vol, in this case) must
also be compatible with the return type specified for the method.

One more point: The preceding program can be written a bit more efficiently because
there is actually no need for the vol variable. The call to volume() could have been used in
the println() statement directly, as shown here:

System.out.println("Volume is " + mybox1.volume());

In this case, when println() is executed, mybox1.volume() will be called automatically and
its value will be passed to println().

Adding a Method That Takes Parameters
While some methods don’t need parameters, most do. Parameters allow a method to be
generalized. That is, a parameterized method can operate on a variety of data and/or be used
in a number of slightly different situations. To illustrate this point, let’s use a very simple
example. Here is a method that returns the square of the number 10:

int square()
{
return 10 * 10;

}

While this method does, indeed, return the value of 10 squared, its use is very limited.
However, if you modify the method so that it takes a parameter, as shown next, then you
can make square() much more useful.

int square(int i)
{
return i * i;

}

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 115

Now, square() will return the square of whatever value it is called with. That is, square() is
now a general-purpose method that can compute the square of any integer value, rather than
just 10.

Here is an example:

int x, y;
x = square(5); // x equals 25
x = square(9); // x equals 81
y = 2;
x = square(y); // x equals 4

In the first call to square(), the value 5 will be passed into parameter i. In the second call, i
will receive the value 9. The third invocation passes the value of y, which is 2 in this example.
As these examples show, square() is able to return the square of whatever data it is passed.

It is important to keep the two terms parameter and argument straight. A parameter is a
variable defined by a method that receives a value when the method is called. For example,
in square(), i is a parameter. An argument is a value that is passed to a method when it is
invoked. For example, square(100) passes 100 as an argument. Inside square(), the parameter i
receives that value.

You can use a parameterized method to improve the Box class. In the preceding examples,
the dimensions of each box had to be set separately by use of a sequence of statements, such as:

mybox1.width = 10;
mybox1.height = 20;
mybox1.depth = 15;

While this code works, it is troubling for two reasons. First, it is clumsy and error prone. For
example, it would be easy to forget to set a dimension. Second, in well-designed Java programs,
instance variables should be accessed only through methods defined by their class. In the
future, you can change the behavior of a method, but you can’t change the behavior of an
exposed instance variable.

Thus, a better approach to setting the dimensions of a box is to create a method that takes
the dimensions of a box in its parameters and sets each instance variable appropriately. This
concept is implemented by the following program:

// This program uses a parameterized method.

class Box {
double width;
double height;
double depth;

// compute and return volume
double volume() {
return width * height * depth;

}

// sets dimensions of box
void setDim(double w, double h, double d) {
width = w;

116 P a r t I : T h e J a v a L a n g u a g e

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 117

height = h;
depth = d;

}
}

class BoxDemo5 {
public static void main(String args[]) {
Box mybox1 = new Box();
Box mybox2 = new Box();
double vol;

// initialize each box
mybox1.setDim(10, 20, 15);
mybox2.setDim(3, 6, 9);

// get volume of first box
vol = mybox1.volume();
System.out.println("Volume is " + vol);

// get volume of second box
vol = mybox2.volume();
System.out.println("Volume is " + vol);

}
}

As you can see, the setDim() method is used to set the dimensions of each box. For
example, when

mybox1.setDim(10, 20, 15);

is executed, 10 is copied into parameter w, 20 is copied into h, and 15 is copied into d. Inside
setDim() the values of w, h, and d are then assigned to width, height, and depth, respectively.

For many readers, the concepts presented in the preceding sections will be familiar.
However, if such things as method calls, arguments, and parameters are new to you, then you
might want to take some time to experiment before moving on. The concepts of the method
invocation, parameters, and return values are fundamental to Java programming.

Constructors
It can be tedious to initialize all of the variables in a class each time an instance is created. Even
when you add convenience functions like setDim(), it would be simpler and more concise
to have all of the setup done at the time the object is first created. Because the requirement
for initialization is so common, Java allows objects to initialize themselves when they are
created. This automatic initialization is performed through the use of a constructor.

A constructor initializes an object immediately upon creation. It has the same name as the
class in which it resides and is syntactically similar to a method. Once defined, the constructor
is automatically called immediately after the object is created, before the new operator completes.
Constructors look a little strange because they have no return type, not even void. This is
because the implicit return type of a class’ constructor is the class type itself. It is the constructor’s
job to initialize the internal state of an object so that the code creating an instance will have
a fully initialized, usable object immediately.

You can rework the Box example so that the dimensions of a box are automatically
initialized when an object is constructed. To do so, replace setDim() with a constructor.
Let’s begin by defining a simple constructor that simply sets the dimensions of each box
to the same values. This version is shown here:

/* Here, Box uses a constructor to initialize the
dimensions of a box.

*/
class Box {
double width;
double height;
double depth;

// This is the constructor for Box.
Box() {
System.out.println("Constructing Box");
width = 10;
height = 10;
depth = 10;

}

// compute and return volume
double volume() {
return width * height * depth;

}
}

class BoxDemo6 {
public static void main(String args[]) {
// declare, allocate, and initialize Box objects
Box mybox1 = new Box();
Box mybox2 = new Box();

double vol;

// get volume of first box
vol = mybox1.volume();
System.out.println("Volume is " + vol);

// get volume of second box
vol = mybox2.volume();
System.out.println("Volume is " + vol);

}
}

When this program is run, it generates the following results:

Constructing Box
Constructing Box
Volume is 1000.0
Volume is 1000.0

118 P a r t I : T h e J a v a L a n g u a g e

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 119

As you can see, both mybox1 and mybox2 were initialized by the Box() constructor when
they were created. Since the constructor gives all boxes the same dimensions, 10 by 10 by 10,
both mybox1 and mybox2 will have the same volume. The println() statement inside Box()
is for the sake of illustration only. Most constructors will not display anything. They will
simply initialize an object.

Before moving on, let’s reexamine the new operator. As you know, when you allocate an
object, you use the following general form:

class-var = new classname();

Now you can understand why the parentheses are needed after the class name. What is actually
happening is that the constructor for the class is being called. Thus, in the line

Box mybox1 = new Box();

new Box() is calling the Box() constructor. When you do not explicitly define a constructor
for a class, then Java creates a default constructor for the class. This is why the preceding line
of code worked in earlier versions of Box that did not define a constructor. The default
constructor automatically initializes all instance variables to zero. The default constructor is
often sufficient for simple classes, but it usually won’t do for more sophisticated ones. Once
you define your own constructor, the default constructor is no longer used.

Parameterized Constructors
While the Box() constructor in the preceding example does initialize a Box object, it is not
very useful—all boxes have the same dimensions. What is needed is a way to construct Box
objects of various dimensions. The easy solution is to add parameters to the constructor. As
you can probably guess, this makes them much more useful. For example, the following version
of Box defines a parameterized constructor that sets the dimensions of a box as specified by
those parameters. Pay special attention to how Box objects are created.

/* Here, Box uses a parameterized constructor to
initialize the dimensions of a box.

*/
class Box {
double width;
double height;
double depth;

// This is the constructor for Box.
Box(double w, double h, double d) {
width = w;
height = h;
depth = d;

}

// compute and return volume
double volume() {
return width * height * depth;

}
}

class BoxDemo7 {
public static void main(String args[]) {
// declare, allocate, and initialize Box objects
Box mybox1 = new Box(10, 20, 15);
Box mybox2 = new Box(3, 6, 9);

double vol;

// get volume of first box
vol = mybox1.volume();
System.out.println("Volume is " + vol);

// get volume of second box
vol = mybox2.volume();
System.out.println("Volume is " + vol);

}
}

The output from this program is shown here:

Volume is 3000.0
Volume is 162.0

As you can see, each object is initialized as specified in the parameters to its constructor.
For example, in the following line,

Box mybox1 = new Box(10, 20, 15);

the values 10, 20, and 15 are passed to the Box() constructor when new creates the object.
Thus, mybox1’s copy of width, height, and depth will contain the values 10, 20, and 15,
respectively.

The this Keyword
Sometimes a method will need to refer to the object that invoked it. To allow this, Java defines
the this keyword. this can be used inside any method to refer to the current object. That is,
this is always a reference to the object on which the method was invoked. You can use this
anywhere a reference to an object of the current class’ type is permitted.

To better understand what this refers to, consider the following version of Box():

// A redundant use of this.
Box(double w, double h, double d) {
this.width = w;
this.height = h;
this.depth = d;

}

This version of Box() operates exactly like the earlier version. The use of this is redundant,
but perfectly correct. Inside Box(), this will always refer to the invoking object. While it is
redundant in this case, this is useful in other contexts, one of which is explained in the next
section.

120 P a r t I : T h e J a v a L a n g u a g e

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 121

Instance Variable Hiding
As you know, it is illegal in Java to declare two local variables with the same name inside
the same or enclosing scopes. Interestingly, you can have local variables, including formal
parameters to methods, which overlap with the names of the class’ instance variables. However,
when a local variable has the same name as an instance variable, the local variable hides the
instance variable. This is why width, height, and depth were not used as the names of the
parameters to the Box() constructor inside the Box class. If they had been, then width would
have referred to the formal parameter, hiding the instance variable width. While it is usually
easier to simply use different names, there is another way around this situation. Because this
lets you refer directly to the object, you can use it to resolve any name space collisions that
might occur between instance variables and local variables. For example, here is another
version of Box(), which uses width, height, and depth for parameter names and then uses
this to access the instance variables by the same name:

// Use this to resolve name-space collisions.
Box(double width, double height, double depth) {
this.width = width;
this.height = height;
this.depth = depth;

}

A word of caution: The use of this in such a context can sometimes be confusing, and
some programmers are careful not to use local variables and formal parameter names that
hide instance variables. Of course, other programmers believe the contrary—that it is a good
convention to use the same names for clarity, and use this to overcome the instance variable
hiding. It is a matter of taste which approach you adopt.

Garbage Collection
Since objects are dynamically allocated by using the new operator, you might be wondering
how such objects are destroyed and their memory released for later reallocation. In some
languages, such as C++, dynamically allocated objects must be manually released by use of
a delete operator. Java takes a different approach; it handles deallocation for you automatically.
The technique that accomplishes this is called garbage collection. It works like this: when no
references to an object exist, that object is assumed to be no longer needed, and the memory
occupied by the object can be reclaimed. There is no explicit need to destroy objects as in C++.
Garbage collection only occurs sporadically (if at all) during the execution of your program.
It will not occur simply because one or more objects exist that are no longer used. Furthermore,
different Java run-time implementations will take varying approaches to garbage collection,
but for the most part, you should not have to think about it while writing your programs.

The finalize() Method
Sometimes an object will need to perform some action when it is destroyed. For example, if
an object is holding some non-Java resource such as a file handle or character font, then you
might want to make sure these resources are freed before an object is destroyed. To handle

122 P a r t I : T h e J a v a L a n g u a g e

such situations, Java provides a mechanism called finalization. By using finalization, you can
define specific actions that will occur when an object is just about to be reclaimed by the
garbage collector.

To add a finalizer to a class, you simply define the finalize() method. The Java run time
calls that method whenever it is about to recycle an object of that class. Inside the finalize()
method, you will specify those actions that must be performed before an object is destroyed.
The garbage collector runs periodically, checking for objects that are no longer referenced by
any running state or indirectly through other referenced objects. Right before an asset is freed,
the Java run time calls the finalize() method on the object.

The finalize() method has this general form:

protected void finalize()
{
// finalization code here
}

Here, the keyword protected is a specifier that prevents access to finalize() by code defined
outside its class. This and the other access specifiers are explained in Chapter 7.

It is important to understand that finalize() is only called just prior to garbage collection.
It is not called when an object goes out-of-scope, for example. This means that you cannot
know when—or even if—finalize() will be executed. Therefore, your program should provide
other means of releasing system resources, etc., used by the object. It must not rely on finalize()
for normal program operation.

NOTEOTE If you are familiar with C++, then you know that C++ allows you to define a destructor for
a class, which is called when an object goes out-of-scope. Java does not support this idea or provide
for destructors. The finalize() method only approximates the function of a destructor. As you
get more experienced with Java, you will see that the need for destructor functions is minimal
because of Java’s garbage collection subsystem.

A Stack Class
While the Box class is useful to illustrate the essential elements of a class, it is of little practical
value. To show the real power of classes, this chapter will conclude with a more sophisticated
example. As you recall from the discussion of object-oriented programming (OOP) presented in
Chapter 2, one of OOP’s most important benefits is the encapsulation of data and the code that
manipulates that data. As you have seen, the class is the mechanism by which encapsulation
is achieved in Java. By creating a class, you are creating a new data type that defines both the
nature of the data being manipulated and the routines used to manipulate it. Further, the
methods define a consistent and controlled interface to the class’ data. Thus, you can use
the class through its methods without having to worry about the details of its implementation
or how the data is actually managed within the class. In a sense, a class is like a “data engine.”
No knowledge of what goes on inside the engine is required to use the engine through its
controls. In fact, since the details are hidden, its inner workings can be changed as needed.
As long as your code uses the class through its methods, internal details can change without
causing side effects outside the class.

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 123

To see a practical application of the preceding discussion, let’s develop one of the
archetypal examples of encapsulation: the stack. A stack stores data using first-in, last-out
ordering. That is, a stack is like a stack of plates on a table—the first plate put down on the
table is the last plate to be used. Stacks are controlled through two operations traditionally
called push and pop. To put an item on top of the stack, you will use push. To take an item off
the stack, you will use pop. As you will see, it is easy to encapsulate the entire stack mechanism.

Here is a class called Stack that implements a stack for integers:

// This class defines an integer stack that can hold 10 values.
class Stack {
int stck[] = new int[10];
int tos;

// Initialize top-of-stack
Stack() {
tos = -1;

}

// Push an item onto the stack
void push(int item) {
if(tos==9)
System.out.println("Stack is full.");

else
stck[++tos] = item;

}

// Pop an item from the stack
int pop() {
if(tos < 0) {
System.out.println("Stack underflow.");
return 0;

}
else
return stck[tos--];

}
}

As you can see, the Stack class defines two data items and three methods. The stack of integers
is held by the array stck. This array is indexed by the variable tos, which always contains the
index of the top of the stack. The Stack() constructor initializes tos to –1, which indicates an
empty stack. The method push() puts an item on the stack. To retrieve an item, call pop().
Since access to the stack is through push() and pop(), the fact that the stack is held in an
array is actually not relevant to using the stack. For example, the stack could be held in a
more complicated data structure, such as a linked list, yet the interface defined by push()
and pop() would remain the same.

The class TestStack, shown here, demonstrates the Stack class. It creates two integer stacks,
pushes some values onto each, and then pops them off.

class TestStack {
public static void main(String args[]) {
Stack mystack1 = new Stack();
Stack mystack2 = new Stack();

// push some numbers onto the stack
for(int i=0; i<10; i++) mystack1.push(i);
for(int i=10; i<20; i++) mystack2.push(i);

// pop those numbers off the stack
System.out.println("Stack in mystack1:");
for(int i=0; i<10; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in mystack2:");
for(int i=0; i<10; i++)

System.out.println(mystack2.pop());
}

}

This program generates the following output:

Stack in mystack1:
9
8
7
6
5
4
3
2
1
0
Stack in mystack2:
19
18
17
16
15
14
13
12
11
10

As you can see, the contents of each stack are separate.
One last point about the Stack class. As it is currently implemented, it is possible for the

array that holds the stack, stck, to be altered by code outside of the Stack class. This leaves
Stack open to misuse or mischief. In the next chapter, you will see how to remedy this situation.

124 P a r t I : T h e J a v a L a n g u a g e

7
A Closer Look at

Methods and Classes

This chapter continues the discussion of methods and classes begun in the preceding
chapter. It examines several topics relating to methods, including overloading, parameter
passing, and recursion. The chapter then returns to the class, discussing access control,

the use of the keyword static, and one of Java’s most important built-in classes: String.

Overloading Methods
In Java it is possible to define two or more methods within the same class that share the
same name, as long as their parameter declarations are different. When this is the case, the
methods are said to be overloaded, and the process is referred to as method overloading. Method
overloading is one of the ways that Java supports polymorphism. If you have never used
a language that allows the overloading of methods, then the concept may seem strange at
first. But as you will see, method overloading is one of Java’s most exciting and useful features.

When an overloaded method is invoked, Java uses the type and/or number of
arguments as its guide to determine which version of the overloaded method to actually
call. Thus, overloaded methods must differ in the type and/or number of their parameters.
While overloaded methods may have different return types, the return type alone is
insufficient to distinguish two versions of a method. When Java encounters a call to an
overloaded method, it simply executes the version of the method whose parameters match
the arguments used in the call.

Here is a simple example that illustrates method overloading:

// Demonstrate method overloading.
class OverloadDemo {
void test() {
System.out.println("No parameters");

}

// Overload test for one integer parameter.
void test(int a) {
System.out.println("a: " + a);

}

1 2 5

126 P a r t I : T h e J a v a L a n g u a g e

// Overload test for two integer parameters.
void test(int a, int b) {
System.out.println("a and b: " + a + " " + b);

}

// overload test for a double parameter
double test(double a) {
System.out.println("double a: " + a);
return a*a;

}
}

class Overload {
public static void main(String args[]) {
OverloadDemo ob = new OverloadDemo();
double result;

// call all versions of test()
ob.test();
ob.test(10);
ob.test(10, 20);
result = ob.test(123.25);
System.out.println("Result of ob.test(123.25): " + result);

}
}

This program generates the following output:

No parameters
a: 10
a and b: 10 20
double a: 123.25
Result of ob.test(123.25): 15190.5625

As you can see, test() is overloaded four times. The first version takes no parameters,
the second takes one integer parameter, the third takes two integer parameters, and the
fourth takes one double parameter. The fact that the fourth version of test() also returns a
value is of no consequence relative to overloading, since return types do not play a role in
overload resolution.

When an overloaded method is called, Java looks for a match between the arguments
used to call the method and the method’s parameters. However, this match need not always
be exact. In some cases, Java’s automatic type conversions can play a role in overload resolution.
For example, consider the following program:

// Automatic type conversions apply to overloading.
class OverloadDemo {
void test() {
System.out.println("No parameters");

}

// Overload test for two integer parameters.
void test(int a, int b) {
System.out.println("a and b: " + a + " " + b);

}

// overload test for a double parameter
void test(double a) {
System.out.println("Inside test(double) a: " + a);

}
}

class Overload {
public static void main(String args[]) {
OverloadDemo ob = new OverloadDemo();
int i = 88;

ob.test();
ob.test(10, 20);

ob.test(i); // this will invoke test(double)
ob.test(123.2); // this will invoke test(double)

}
}

This program generates the following output:

No parameters
a and b: 10 20
Inside test(double) a: 88
Inside test(double) a: 123.2

As you can see, this version of OverloadDemo does not define test(int). Therefore, when
test() is called with an integer argument inside Overload, no matching method is found.
However, Java can automatically convert an integer into a double, and this conversion can
be used to resolve the call. Therefore, after test(int) is not found, Java elevates i to double
and then calls test(double). Of course, if test(int) had been defined, it would have been called
instead. Java will employ its automatic type conversions only if no exact match is found.

Method overloading supports polymorphism because it is one way that Java implements
the “one interface, multiple methods” paradigm. To understand how, consider the following.
In languages that do not support method overloading, each method must be given a unique
name. However, frequently you will want to implement essentially the same method for
different types of data. Consider the absolute value function. In languages that do not
support overloading, there are usually three or more versions of this function, each with a
slightly different name. For instance, in C, the function abs() returns the absolute value of
an integer, labs() returns the absolute value of a long integer, and fabs() returns the absolute
value of a floating-point value. Since C does not support overloading, each function has to
have its own name, even though all three functions do essentially the same thing. This makes
the situation more complex, conceptually, than it actually is. Although the underlying concept
of each function is the same, you still have three names to remember. This situation does not
occur in Java, because each absolute value method can use the same name. Indeed, Java’s

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 127

standard class library includes an absolute value method, called abs(). This method is
overloaded by Java’s Math class to handle all numeric types. Java determines which version
of abs() to call based upon the type of argument.

The value of overloading is that it allows related methods to be accessed by use of a
common name. Thus, the name abs represents the general action that is being performed. It
is left to the compiler to choose the right specific version for a particular circumstance. You,
the programmer, need only remember the general operation being performed. Through the
application of polymorphism, several names have been reduced to one. Although this
example is fairly simple, if you expand the concept, you can see how overloading can help
you manage greater complexity.

When you overload a method, each version of that method can perform any activity
you desire. There is no rule stating that overloaded methods must relate to one another.
However, from a stylistic point of view, method overloading implies a relationship. Thus,
while you can use the same name to overload unrelated methods, you should not. For
example, you could use the name sqr to create methods that return the square of an integer
and the square root of a floating-point value. But these two operations are fundamentally
different. Applying method overloading in this manner defeats its original purpose. In
practice, you should only overload closely related operations.

Overloading Constructors
In addition to overloading normal methods, you can also overload constructor methods. In
fact, for most real-world classes that you create, overloaded constructors will be the norm,
not the exception. To understand why, let’s return to the Box class developed in the preceding
chapter. Following is the latest version of Box:

class Box {
double width;
double height;
double depth;

// This is the constructor for Box.
Box(double w, double h, double d) {
width = w;
height = h;
depth = d;

}

// compute and return volume
double volume() {
return width * height * depth;

}
}

As you can see, the Box() constructor requires three parameters. This means that all
declarations of Box objects must pass three arguments to the Box() constructor. For example,
the following statement is currently invalid:

Box ob = new Box();

128 P a r t I : T h e J a v a L a n g u a g e

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 129

Since Box() requires three arguments, it’s an error to call it without them. This raises
some important questions. What if you simply wanted a box and did not care (or know)
what its initial dimensions were? Or, what if you want to be able to initialize a cube by
specifying only one value that would be used for all three dimensions? As the Box class
is currently written, these other options are not available to you.

Fortunately, the solution to these problems is quite easy: simply overload the Box
constructor so that it handles the situations just described. Here is a program that contains
an improved version of Box that does just that:

/* Here, Box defines three constructors to initialize
the dimensions of a box various ways.

*/
class Box {
double width;
double height;
double depth;

// constructor used when all dimensions specified
Box(double w, double h, double d) {
width = w;
height = h;
depth = d;

}

// constructor used when no dimensions specified
Box() {
width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box

}

// constructor used when cube is created
Box(double len) {
width = height = depth = len;

}

// compute and return volume
double volume() {
return width * height * depth;

}
}

class OverloadCons {
public static void main(String args[]) {
// create boxes using the various constructors
Box mybox1 = new Box(10, 20, 15);
Box mybox2 = new Box();
Box mycube = new Box(7);

double vol;

// get volume of first box
vol = mybox1.volume();
System.out.println("Volume of mybox1 is " + vol);

// get volume of second box
vol = mybox2.volume();
System.out.println("Volume of mybox2 is " + vol);
// get volume of cube
vol = mycube.volume();
System.out.println("Volume of mycube is " + vol);

}
}

The output produced by this program is shown here:

Volume of mybox1 is 3000.0
Volume of mybox2 is -1.0
Volume of mycube is 343.0

As you can see, the proper overloaded constructor is called based upon the parameters
specified when new is executed.

Using Objects as Parameters
So far, we have only been using simple types as parameters to methods. However, it is both
correct and common to pass objects to methods. For example, consider the following short
program:

// Objects may be passed to methods.
class Test {
int a, b;

Test(int i, int j) {
a = i;
b = j;

}

// return true if o is equal to the invoking object
boolean equals(Test o) {
if(o.a == a && o.b == b) return true;
else return false;

}
}

class PassOb {
public static void main(String args[]) {
Test ob1 = new Test(100, 22);
Test ob2 = new Test(100, 22);
Test ob3 = new Test(-1, -1);

System.out.println("ob1 == ob2: " + ob1.equals(ob2));

130 P a r t I : T h e J a v a L a n g u a g e

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 131

System.out.println("ob1 == ob3: " + ob1.equals(ob3));
}

}

This program generates the following output:

ob1 == ob2: true
ob1 == ob3: false

As you can see, the equals() method inside Test compares two objects for equality and
returns the result. That is, it compares the invoking object with the one that it is passed. If
they contain the same values, then the method returns true. Otherwise, it returns false. Notice
that the parameter o in equals() specifies Test as its type. Although Test is a class type created
by the program, it is used in just the same way as Java’s built-in types.

One of the most common uses of object parameters involves constructors. Frequently, you
will want to construct a new object so that it is initially the same as some existing object. To do
this, you must define a constructor that takes an object of its class as a parameter. For example,
the following version of Box allows one object to initialize another:

// Here, Box allows one object to initialize another.

class Box {
double width;
double height;
double depth;

// Notice this constructor. It takes an object of type Box.
Box(Box ob) { // pass object to constructor
width = ob.width;
height = ob.height;
depth = ob.depth;

}

// constructor used when all dimensions specified
Box(double w, double h, double d) {
width = w;
height = h;
depth = d;

}

// constructor used when no dimensions specified
Box() {
width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box

}

// constructor used when cube is created
Box(double len) {
width = height = depth = len;

}

// compute and return volume
double volume() {
return width * height * depth;

}
}

class OverloadCons2 {
public static void main(String args[]) {
// create boxes using the various constructors
Box mybox1 = new Box(10, 20, 15);
Box mybox2 = new Box();
Box mycube = new Box(7);

Box myclone = new Box(mybox1); // create copy of mybox1

double vol;

// get volume of first box
vol = mybox1.volume();
System.out.println("Volume of mybox1 is " + vol);
// get volume of second box
vol = mybox2.volume();
System.out.println("Volume of mybox2 is " + vol);

// get volume of cube
vol = mycube.volume();
System.out.println("Volume of cube is " + vol);

// get volume of clone
vol = myclone.volume();
System.out.println("Volume of clone is " + vol);

}
}

As you will see when you begin to create your own classes, providing many forms
of constructors is usually required to allow objects to be constructed in a convenient and
efficient manner.

A Closer Look at Argument Passing
In general, there are two ways that a computer language can pass an argument to a subroutine.
The first way is call-by-value. This approach copies the value of an argument into the formal
parameter of the subroutine. Therefore, changes made to the parameter of the subroutine
have no effect on the argument. The second way an argument can be passed is call-by-reference.
In this approach, a reference to an argument (not the value of the argument) is passed to the
parameter. Inside the subroutine, this reference is used to access the actual argument specified
in the call. This means that changes made to the parameter will affect the argument used to
call the subroutine. As you will see, Java uses both approaches, depending upon what is passed.

In Java, when you pass a primitive type to a method, it is passed by value. Thus, what
occurs to the parameter that receives the argument has no effect outside the method. For
example, consider the following program:

132 P a r t I : T h e J a v a L a n g u a g e

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 133

// Primitive types are passed by value.
class Test {
void meth(int i, int j) {
i *= 2;
j /= 2;

}
}
class CallByValue {
public static void main(String args[]) {
Test ob = new Test();

int a = 15, b = 20;

System.out.println("a and b before call: " +
a + " " + b);

ob.meth(a, b);

System.out.println("a and b after call: " +
a + " " + b);

}
}

The output from this program is shown here:

a and b before call: 15 20
a and b after call: 15 20

As you can see, the operations that occur inside meth() have no effect on the values of a and b
used in the call; their values here did not change to 30 and 10.

When you pass an object to a method, the situation changes dramatically, because objects
are passed by what is effectively call-by-reference. Keep in mind that when you create a
variable of a class type, you are only creating a reference to an object. Thus, when you pass
this reference to a method, the parameter that receives it will refer to the same object as that
referred to by the argument. This effectively means that objects are passed to methods by use
of call-by-reference. Changes to the object inside the method do affect the object used as an
argument. For example, consider the following program:

// Objects are passed by reference.

class Test {
int a, b;

Test(int i, int j) {
a = i;
b = j;

}
// pass an object
void meth(Test o) {
o.a *= 2;

o.b /= 2;
}

}

class CallByRef {
public static void main(String args[]) {
Test ob = new Test(15, 20);

System.out.println("ob.a and ob.b before call: " +
ob.a + " " + ob.b);

ob.meth(ob);

System.out.println("ob.a and ob.b after call: " +
ob.a + " " + ob.b);

}
}

This program generates the following output:

ob.a and ob.b before call: 15 20
ob.a and ob.b after call: 30 10

As you can see, in this case, the actions inside meth() have affected the object used as an
argument.

As a point of interest, when an object reference is passed to a method, the reference itself
is passed by use of call-by-value. However, since the value being passed refers to an object,
the copy of that value will still refer to the same object that its corresponding argument does.

REMEMBEREMEMBER When a primitive type is passed to a method, it is done by use of call-by-value. Objects
are implicitly passed by use of call-by-reference.

Returning Objects
A method can return any type of data, including class types that you create. For example, in
the following program, the incrByTen() method returns an object in which the value of a is
ten greater than it is in the invoking object.

// Returning an object.
class Test {
int a;

Test(int i) {
a = i;

}

Test incrByTen() {
Test temp = new Test(a+10);
return temp;

}

134 P a r t I : T h e J a v a L a n g u a g e

}

class RetOb {
public static void main(String args[]) {
Test ob1 = new Test(2);
Test ob2;

ob2 = ob1.incrByTen();
System.out.println("ob1.a: " + ob1.a);
System.out.println("ob2.a: " + ob2.a);

ob2 = ob2.incrByTen();
System.out.println("ob2.a after second increase: "

+ ob2.a);
}

}

The output generated by this program is shown here:

ob1.a: 2
ob2.a: 12
ob2.a after second increase: 22

As you can see, each time incrByTen() is invoked, a new object is created, and a reference
to it is returned to the calling routine.

The preceding program makes another important point: Since all objects are dynamically
allocated using new, you don’t need to worry about an object going out-of-scope because the
method in which it was created terminates. The object will continue to exist as long as there is
a reference to it somewhere in your program. When there are no references to it, the object will
be reclaimed the next time garbage collection takes place.

Recursion
Java supports recursion. Recursion is the process of defining something in terms of itself. As
it relates to Java programming, recursion is the attribute that allows a method to call itself.
A method that calls itself is said to be recursive.

The classic example of recursion is the computation of the factorial of a number. The
factorial of a number N is the product of all the whole numbers between 1 and N. For
example, 3 factorial is 1 × 2 × 3, or 6. Here is how a factorial can be computed by use of a
recursive method:

// A simple example of recursion.
class Factorial {
// this is a recursive method
int fact(int n) {
int result;

if(n==1) return 1;
result = fact(n-1) * n;
return result;

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 135

136 P a r t I : T h e J a v a L a n g u a g e

}
}

class Recursion {
public static void main(String args[]) {
Factorial f = new Factorial();

System.out.println("Factorial of 3 is " + f.fact(3));
System.out.println("Factorial of 4 is " + f.fact(4));
System.out.println("Factorial of 5 is " + f.fact(5));

}
}

The output from this program is shown here:

Factorial of 3 is 6
Factorial of 4 is 24
Factorial of 5 is 120

If you are unfamiliar with recursive methods, then the operation of fact() may seem a
bit confusing. Here is how it works. When fact() is called with an argument of 1, the function
returns 1; otherwise, it returns the product of fact(n–1)*n. To evaluate this expression, fact()
is called with n–1. This process repeats until n equals 1 and the calls to the method begin
returning.

To better understand how the fact() method works, let’s go through a short example.
When you compute the factorial of 3, the first call to fact() will cause a second call to be
made with an argument of 2. This invocation will cause fact() to be called a third time with
an argument of 1. This call will return 1, which is then multiplied by 2 (the value of n in the
second invocation). This result (which is 2) is then returned to the original invocation of
fact() and multiplied by 3 (the original value of n). This yields the answer, 6. You might
find it interesting to insert println() statements into fact(), which will show at what level
each call is and what the intermediate answers are.

When a method calls itself, new local variables and parameters are allocated storage
on the stack, and the method code is executed with these new variables from the start.
As each recursive call returns, the old local variables and parameters are removed from
the stack, and execution resumes at the point of the call inside the method. Recursive
methods could be said to “telescope” out and back.

Recursive versions of many routines may execute a bit more slowly than the iterative
equivalent because of the added overhead of the additional function calls. Many recursive
calls to a method could cause a stack overrun. Because storage for parameters and local
variables is on the stack and each new call creates a new copy of these variables, it is possible
that the stack could be exhausted. If this occurs, the Java run-time system will cause an
exception. However, you probably will not have to worry about this unless a recursive
routine runs wild.

The main advantage to recursive methods is that they can be used to create clearer and
simpler versions of several algorithms than can their iterative relatives. For example, the
QuickSort sorting algorithm is quite difficult to implement in an iterative way. Also, some types
of AI-related algorithms are most easily implemented using recursive solutions.

When writing recursive methods, you must have an if statement somewhere to force the
method to return without the recursive call being executed. If you don’t do this, once you
call the method, it will never return. This is a very common error in working with recursion.
Use println() statements liberally during development so that you can watch what is going
on and abort execution if you see that you have made a mistake.

Here is one more example of recursion. The recursive method printArray() prints the
first i elements in the array values.

// Another example that uses recursion.

class RecTest {
int values[];

RecTest(int i) {
values = new int[i];

}

// display array -- recursively
void printArray(int i) {
if(i==0) return;
else printArray(i-1);
System.out.println("[" + (i-1) + "] " + values[i-1]);

}
}

class Recursion2 {
public static void main(String args[]) {
RecTest ob = new RecTest(10);
int i;

for(i=0; i<10; i++) ob.values[i] = i;

ob.printArray(10);
}

}

This program generates the following output:

[0] 0
[1] 1
[2] 2
[3] 3
[4] 4
[5] 5
[6] 6
[7] 7
[8] 8
[9] 9

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 137

Introducing Access Control
As you know, encapsulation links data with the code that manipulates it. However,
encapsulation provides another important attribute: access control. Through encapsulation,
you can control what parts of a program can access the members of a class. By controlling
access, you can prevent misuse. For example, allowing access to data only through a well-
defined set of methods, you can prevent the misuse of that data. Thus, when correctly
implemented, a class creates a “black box” which may be used, but the inner workings
of which are not open to tampering. However, the classes that were presented earlier do
not completely meet this goal. For example, consider the Stack class shown at the end of
Chapter 6. While it is true that the methods push() and pop() do provide a controlled
interface to the stack, this interface is not enforced. That is, it is possible for another part of
the program to bypass these methods and access the stack directly. Of course, in the wrong
hands, this could lead to trouble. In this section, you will be introduced to the mechanism
by which you can precisely control access to the various members of a class.

How a member can be accessed is determined by the access specifier that modifies its
declaration. Java supplies a rich set of access specifiers. Some aspects of access control are
related mostly to inheritance or packages. (A package is, essentially, a grouping of classes.)
These parts of Java’s access control mechanism will be discussed later. Here, let’s begin by
examining access control as it applies to a single class. Once you understand the fundamentals
of access control, the rest will be easy.

Java’s access specifiers are public, private, and protected. Java also defines a default
access level. protected applies only when inheritance is involved. The other access specifiers
are described next.

Let’s begin by defining public and private. When a member of a class is modified by
the public specifier, then that member can be accessed by any other code. When a member
of a class is specified as private, then that member can only be accessed by other members of
its class. Now you can understand why main() has always been preceded by the public
specifier. It is called by code that is outside the program—that is, by the Java run-time
system. When no access specifier is used, then by default the member of a class is public
within its own package, but cannot be accessed outside of its package. (Packages are
discussed in the following chapter.)

In the classes developed so far, all members of a class have used the default access mode,
which is essentially public. However, this is not what you will typically want to be the case.
Usually, you will want to restrict access to the data members of a class—allowing access
only through methods. Also, there will be times when you will want to define methods
that are private to a class.

An access specifier precedes the rest of a member’s type specification. That is, it must
begin a member’s declaration statement. Here is an example:

public int i;
private double j;

private int myMethod(int a, char b) { // ...

To understand the effects of public and private access, consider the following program:

138 P a r t I : T h e J a v a L a n g u a g e

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 139

/* This program demonstrates the difference between
public and private.

*/
class Test {
int a; // default access
public int b; // public access
private int c; // private access

// methods to access c
void setc(int i) { // set c's value
c = i;

}
int getc() { // get c's value
return c;

}
}

class AccessTest {
public static void main(String args[]) {
Test ob = new Test();

// These are OK, a and b may be accessed directly
ob.a = 10;
ob.b = 20;

// This is not OK and will cause an error
// ob.c = 100; // Error!

// You must access c through its methods
ob.setc(100); // OK
System.out.println("a, b, and c: " + ob.a + " " +

ob.b + " " + ob.getc());
}

}

As you can see, inside the Test class, a uses default access, which for this example is the
same as specifying public. b is explicitly specified as public. Member c is given private
access. This means that it cannot be accessed by code outside of its class. So, inside the
AccessTest class, c cannot be used directly. It must be accessed through its public methods:
setc() and getc(). If you were to remove the comment symbol from the beginning of the
following line,

// ob.c = 100; // Error!

then you would not be able to compile this program because of the access violation.
To see how access control can be applied to a more practical example, consider the

following improved version of the Stack class shown at the end of Chapter 6.

// This class defines an integer stack that can hold 10 values.
class Stack {
/* Now, both stck and tos are private. This means

that they cannot be accidentally or maliciously
altered in a way that would be harmful to the stack.

*/
private int stck[] = new int[10];
private int tos;

// Initialize top-of-stack
Stack() {
tos = -1;

}

// Push an item onto the stack
void push(int item) {
if(tos==9)
System.out.println("Stack is full.");

else
stck[++tos] = item;

}
// Pop an item from the stack
int pop() {
if(tos < 0) {
System.out.println("Stack underflow.");
return 0;

}
else
return stck[tos--];

}
}

As you can see, now both stck, which holds the stack, and tos, which is the index of the
top of the stack, are specified as private. This means that they cannot be accessed or altered
except through push() and pop(). Making tos private, for example, prevents other parts of
your program from inadvertently setting it to a value that is beyond the end of the stck array.

The following program demonstrates the improved Stack class. Try removing the
commented-out lines to prove to yourself that the stck and tos members are, indeed,
inaccessible.

class TestStack {
public static void main(String args[]) {
Stack mystack1 = new Stack();
Stack mystack2 = new Stack();

// push some numbers onto the stack
for(int i=0; i<10; i++) mystack1.push(i);
for(int i=10; i<20; i++) mystack2.push(i);

// pop those numbers off the stack
System.out.println("Stack in mystack1:");
for(int i=0; i<10; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in mystack2:");

140 P a r t I : T h e J a v a L a n g u a g e

for(int i=0; i<10; i++)
System.out.println(mystack2.pop());

// these statements are not legal
// mystack1.tos = -2;
// mystack2.stck[3] = 100;

}
}

Although methods will usually provide access to the data defined by a class, this does
not always have to be the case. It is perfectly proper to allow an instance variable to be public
when there is good reason to do so. For example, most of the simple classes in this book
were created with little concern about controlling access to instance variables for the sake of
simplicity. However, in most real-world classes, you will need to allow operations on data
only through methods. The next chapter will return to the topic of access control. As you
will see, it is particularly important when inheritance is involved.

Understanding static
There will be times when you will want to define a class member that will be used
independently of any object of that class. Normally, a class member must be accessed only
in conjunction with an object of its class. However, it is possible to create a member that can
be used by itself, without reference to a specific instance. To create such a member, precede
its declaration with the keyword static. When a member is declared static, it can be accessed
before any objects of its class are created, and without reference to any object. You can declare
both methods and variables to be static. The most common example of a static member is
main(). main() is declared as static because it must be called before any objects exist.

Instance variables declared as static are, essentially, global variables. When objects of
its class are declared, no copy of a static variable is made. Instead, all instances of the class
share the same static variable.

Methods declared as static have several restrictions:

• They can only call other static methods.

• They must only access static data.

• They cannot refer to this or super in any way. (The keyword super relates to
inheritance and is described in the next chapter.)

If you need to do computation in order to initialize your static variables, you can declare a
static block that gets executed exactly once, when the class is first loaded. The following
example shows a class that has a static method, some static variables, and a static initialization
block:

// Demonstrate static variables, methods, and blocks.
class UseStatic {
static int a = 3;
static int b;

static void meth(int x) {

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 141

142 P a r t I : T h e J a v a L a n g u a g e

System.out.println("x = " + x);
System.out.println("a = " + a);
System.out.println("b = " + b);

}

static {
System.out.println("Static block initialized.");
b = a * 4;

}

public static void main(String args[]) {
meth(42);

}
}

As soon as the UseStatic class is loaded, all of the static statements are run. First, a is set to 3,
then the static block executes, which prints a message and then initializes b to a * 4 or 12. Then
main() is called, which calls meth(), passing 42 to x. The three println() statements refer to the
two static variables a and b, as well as to the local variable x.

Here is the output of the program:

Static block initialized.
x = 42
a = 3
b = 12

Outside of the class in which they are defined, static methods and variables can be used
independently of any object. To do so, you need only specify the name of their class followed
by the dot operator. For example, if you wish to call a static method from outside its class, you
can do so using the following general form:

classname.method()

Here, classname is the name of the class in which the static method is declared. As you can
see, this format is similar to that used to call non-static methods through object-reference
variables. A static variable can be accessed in the same way—by use of the dot operator on
the name of the class. This is how Java implements a controlled version of global methods
and global variables.

Here is an example. Inside main(), the static method callme() and the static variable b
are accessed through their class name StaticDemo.

class StaticDemo {
static int a = 42;
static int b = 99;
static void callme() {
System.out.println("a = " + a);

}

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 143

}

class StaticByName {
public static void main(String args[]) {
StaticDemo.callme();
System.out.println("b = " + StaticDemo.b);

}
}

Here is the output of this program:

a = 42
b = 99

Introducing final
A variable can be declared as final. Doing so prevents its contents from being modified.
This means that you must initialize a final variable when it is declared. For example:

final int FILE_NEW = 1;
final int FILE_OPEN = 2;
final int FILE_SAVE = 3;
final int FILE_SAVEAS = 4;
final int FILE_QUIT = 5;

Subsequent parts of your program can now use FILE_OPEN, etc., as if they were constants,
without fear that a value has been changed.

It is a common coding convention to choose all uppercase identifiers for final variables.
Variables declared as final do not occupy memory on a per-instance basis. Thus, a final
variable is essentially a constant.

The keyword final can also be applied to methods, but its meaning is substantially
different than when it is applied to variables. This second usage of final is described in the
next chapter, when inheritance is described.

Arrays Revisited
Arrays were introduced earlier in this book, before classes had been discussed. Now that you
know about classes, an important point can be made about arrays: they are implemented as
objects. Because of this, there is a special array attribute that you will want to take advantage
of. Specifically, the size of an array—that is, the number of elements that an array can hold—is
found in its length instance variable. All arrays have this variable, and it will always hold the
size of the array. Here is a program that demonstrates this property:

// This program demonstrates the length array member.
class Length {
public static void main(String args[]) {
int a1[] = new int[10];
int a2[] = {3, 5, 7, 1, 8, 99, 44, -10};
int a3[] = {4, 3, 2, 1};

System.out.println("length of a1 is " + a1.length);
System.out.println("length of a2 is " + a2.length);
System.out.println("length of a3 is " + a3.length);

}
}

This program displays the following output:

length of a1 is 10
length of a2 is 8
length of a3 is 4

As you can see, the size of each array is displayed. Keep in mind that the value of length
has nothing to do with the number of elements that are actually in use. It only reflects the
number of elements that the array is designed to hold.

You can put the length member to good use in many situations. For example, here is an
improved version of the Stack class. As you might recall, the earlier versions of this class
always created a ten-element stack. The following version lets you create stacks of any size.
The value of stck.length is used to prevent the stack from overflowing.

// Improved Stack class that uses the length array member.
class Stack {
private int stck[];
private int tos;

// allocate and initialize stack
Stack(int size) {
stck = new int[size];
tos = -1;

}

// Push an item onto the stack
void push(int item) {
if(tos==stck.length-1) // use length member
System.out.println("Stack is full.");

else
stck[++tos] = item;

}

// Pop an item from the stack
int pop() {
if(tos < 0) {
System.out.println("Stack underflow.");
return 0;

}
else
return stck[tos--];

}
}

class TestStack2 {
public static void main(String args[]) {

144 P a r t I : T h e J a v a L a n g u a g e

Stack mystack1 = new Stack(5);
Stack mystack2 = new Stack(8);
// push some numbers onto the stack
for(int i=0; i<5; i++) mystack1.push(i);
for(int i=0; i<8; i++) mystack2.push(i);

// pop those numbers off the stack
System.out.println("Stack in mystack1:");
for(int i=0; i<5; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in mystack2:");
for(int i=0; i<8; i++)

System.out.println(mystack2.pop());
}

}

Notice that the program creates two stacks: one five elements deep and the other eight
elements deep. As you can see, the fact that arrays maintain their own length information
makes it easy to create stacks of any size.

Introducing Nested and Inner Classes
It is possible to define a class within another class; such classes are known as nested classes.
The scope of a nested class is bounded by the scope of its enclosing class. Thus, if class B is
defined within class A, then B does not exist independently of A. A nested class has access
to the members, including private members, of the class in which it is nested. However, the
enclosing class does not have access to the members of the nested class. A nested class that
is declared directly within its enclosing class scope is a member of its enclosing class. It is
also possible to declare a nested class that is local to a block.

There are two types of nested classes: static and non-static. A static nested class is one
that has the static modifier applied. Because it is static, it must access the members of its
enclosing class through an object. That is, it cannot refer to members of its enclosing class
directly. Because of this restriction, static nested classes are seldom used.

The most important type of nested class is the inner class. An inner class is a non-static
nested class. It has access to all of the variables and methods of its outer class and may refer
to them directly in the same way that other non-static members of the outer class do.

The following program illustrates how to define and use an inner class. The class named
Outer has one instance variable named outer_x, one instance method named test(), and
defines one inner class called Inner.

// Demonstrate an inner class.
class Outer {
int outer_x = 100;

void test() {
Inner inner = new Inner();
inner.display();

}

// this is an inner class

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 145

146 P a r t I : T h e J a v a L a n g u a g e

class Inner {
void display() {
System.out.println("display: outer_x = " + outer_x);

}
}

}

class InnerClassDemo {
public static void main(String args[]) {
Outer outer = new Outer();
outer.test();

}
}

Output from this application is shown here:

display: outer_x = 100

In the program, an inner class named Inner is defined within the scope of class Outer.
Therefore, any code in class Inner can directly access the variable outer_x. An instance
method named display() is defined inside Inner. This method displays outer_x on the
standard output stream. The main() method of InnerClassDemo creates an instance of
class Outer and invokes its test() method. That method creates an instance of class Inner
and the display() method is called.

It is important to realize that an instance of Inner can be created only within the scope
of class Outer. The Java compiler generates an error message if any code outside of class
Outer attempts to instantiate class Inner. (In general, an inner class instance must be
created by an enclosing scope.) You can, however, create an instance of Inner outside of
Outer by qualifying its name with Outer, as in Outer.Inner.

As explained, an inner class has access to all of the members of its enclosing class, but
the reverse is not true. Members of the inner class are known only within the scope of the
inner class and may not be used by the outer class. For example,

// This program will not compile.
class Outer {
int outer_x = 100;

void test() {
Inner inner = new Inner();
inner.display();

}

// this is an inner class
class Inner {
int y = 10; // y is local to Inner
void display() {
System.out.println("display: outer_x = " + outer_x);

}
}

void showy() {
System.out.println(y); // error, y not known here!

}
}

class InnerClassDemo {
public static void main(String args[]) {
Outer outer = new Outer();
outer.test();

}
}

Here, y is declared as an instance variable of Inner. Thus, it is not known outside of that
class and it cannot be used by showy().

Although we have been focusing on inner classes declared as members within an outer
class scope, it is possible to define inner classes within any block scope. For example, you
can define a nested class within the block defined by a method or even within the body of a
for loop, as this next program shows.

// Define an inner class within a for loop.
class Outer {
int outer_x = 100;

void test() {
for(int i=0; i<10; i++) {
class Inner {
void display() {
System.out.println("display: outer_x = " + outer_x);

}
}
Inner inner = new Inner();
inner.display();

}
}

}

class InnerClassDemo {
public static void main(String args[]) {
Outer outer = new Outer();
outer.test();

}
}

The output from this version of the program is shown here.

display: outer_x = 100
display: outer_x = 100
display: outer_x = 100
display: outer_x = 100
display: outer_x = 100
display: outer_x = 100
display: outer_x = 100
display: outer_x = 100

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 147

148 P a r t I : T h e J a v a L a n g u a g e

display: outer_x = 100
display: outer_x = 100

While nested classes are not applicable to all stiuations, they are particularly helpful when
handling events. We will return to the topic of nested classes in Chapter 22. There you will
see how inner classes can be used to simplify the code needed to handle certain types of
events. You will also learn about anonymous inner classes, which are inner classes that don’t
have a name.

One final point: Nested classes were not allowed by the original 1.0 specification for Java.
They were added by Java 1.1.

Exploring the String Class
Although the String class will be examined in depth in Part II of this book, a short exploration
of it is warranted now, because we will be using strings in some of the example programs
shown toward the end of Part I. String is probably the most commonly used class in Java’s
class library. The obvious reason for this is that strings are a very important part of
programming.

The first thing to understand about strings is that every string you create is actually an
object of type String. Even string constants are actually String objects. For example, in the
statement

System.out.println("This is a String, too");

the string “This is a String, too” is a String constant.
The second thing to understand about strings is that objects of type String are immutable;

once a String object is created, its contents cannot be altered. While this may seem like a
serious restriction, it is not, for two reasons:

• If you need to change a string, you can always create a new one that contains
the modifications.

• Java defines a peer class of String, called StringBuffer, which allows strings
to be altered, so all of the normal string manipulations are still available in Java.
(StringBuffer is described in Part II of this book.)

Strings can be constructed in a variety of ways. The easiest is to use a statement like this:

String myString = "this is a test";

Once you have created a String object, you can use it anywhere that a string is allowed.
For example, this statement displays myString:

System.out.println(myString);

Java defines one operator for String objects: +. It is used to concatenate two strings.
For example, this statement

String myString = "I" + " like " + "Java.";

results in myString containing “I like Java.”

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 149

The following program demonstrates the preceding concepts:

// Demonstrating Strings.
class StringDemo {
public static void main(String args[]) {
String strOb1 = "First String";
String strOb2 = "Second String";
String strOb3 = strOb1 + " and " + strOb2;

System.out.println(strOb1);
System.out.println(strOb2);
System.out.println(strOb3);

}
}

The output produced by this program is shown here:

First String
Second String
First String and Second String

The String class contains several methods that you can use. Here are a few. You can test
two strings for equality by using equals(). You can obtain the length of a string by calling
the length() method. You can obtain the character at a specified index within a string by
calling charAt(). The general forms of these three methods are shown here:

boolean equals(String object)
int length()
char charAt(int index)

Here is a program that demonstrates these methods:

// Demonstrating some String methods.
class StringDemo2 {
public static void main(String args[]) {
String strOb1 = "First String";
String strOb2 = "Second String";
String strOb3 = strOb1;

System.out.println("Length of strOb1: " +
strOb1.length());

System.out.println("Char at index 3 in strOb1: " +
strOb1.charAt(3));

if(strOb1.equals(strOb2))
System.out.println("strOb1 == strOb2");

else
System.out.println("strOb1 != strOb2");

if(strOb1.equals(strOb3))
System.out.println("strOb1 == strOb3");

else

150 P a r t I : T h e J a v a L a n g u a g e

System.out.println("strOb1 != strOb3");
}

}

This program generates the following output:

Length of strOb1: 12
Char at index 3 in strOb1: s
strOb1 != strOb2
strOb1 == strOb3

Of course, you can have arrays of strings, just like you can have arrays of any other type
of object. For example:

// Demonstrate String arrays.
class StringDemo3 {
public static void main(String args[]) {
String str[] = { "one", "two", "three" };

for(int i=0; i<str.length; i++)
System.out.println("str[" + i + "]: " +

str[i]);
}

}

Here is the output from this program:

str[0]: one
str[1]: two
str[2]: three

As you will see in the following section, string arrays play an important part in many
Java programs.

Using Command-Line Arguments
Sometimes you will want to pass information into a program when you run it. This is
accomplished by passing command-line arguments to main(). A command-line argument is
the information that directly follows the program’s name on the command line when it is
executed. To access the command-line arguments inside a Java program is quite easy—
they are stored as strings in a String array passed to the args parameter of main(). The first
command-line argument is stored at args[0], the second at args[1], and so on. For example,
the following program displays all of the command-line arguments that it is called with:

// Display all command-line arguments.
class CommandLine {
public static void main(String args[]) {
for(int i=0; i<args.length; i++)
System.out.println("args[" + i + "]: " +

args[i]);
}

}

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 151

Try executing this program, as shown here:

java CommandLine this is a test 100 -1

When you do, you will see the following output:

args[0]: this
args[1]: is
args[2]: a
args[3]: test
args[4]: 100
args[5]: -1

REMEMBEREMEMBER All command-line arguments are passed as strings. You must convert numeric values
to their internal forms manually, as explained in Chapter 16.

Varargs: Variable-Length Arguments
Beginning with JDK 5, Java has included a feature that simplifies the creation of methods
that need to take a variable number of arguments. This feature is called varargs and it is
short for variable-length arguments. A method that takes a variable number of arguments
is called a variable-arity method, or simply a varargs method.

Situations that require that a variable number of arguments be passed to a method are
not unusual. For example, a method that opens an Internet connection might take a user
name, password, filename, protocol, and so on, but supply defaults if some of this information
is not provided. In this situation, it would be convenient to pass only the arguments to
which the defaults did not apply. Another example is the printf() method that is part of
Java’s I/O library. As you will see in Chapter 19, it takes a variable number of arguments,
which it formats and then outputs.

Prior to JDK 5, variable-length arguments could be handled two ways, neither of which
was particularly pleasing. First, if the maximum number of arguments was small and
known, then you could create overloaded versions of the method, one for each way the
method could be called. Although this works and is suitable for some cases, it applies to
only a narrow class of situations.

In cases where the maximum number of potential arguments was larger, or unknowable,
a second approach was used in which the arguments were put into an array, and then the
array was passed to the method. This approach is illustrated by the following program:

// Use an array to pass a variable number of
// arguments to a method. This is the old-style
// approach to variable-length arguments.
class PassArray {
static void vaTest(int v[]) {
System.out.print("Number of args: " + v.length +

" Contents: ");

for(int x : v)
System.out.print(x + " ");

152 P a r t I : T h e J a v a L a n g u a g e

System.out.println();
}

public static void main(String args[])
{
// Notice how an array must be created to
// hold the arguments.
int n1[] = { 10 };
int n2[] = { 1, 2, 3 };
int n3[] = { };

vaTest(n1); // 1 arg
vaTest(n2); // 3 args
vaTest(n3); // no args

}
}

The output from the program is shown here:

Number of args: 1 Contents: 10
Number of args: 3 Contents: 1 2 3
Number of args: 0 Contents:

In the program, the method vaTest() is passed its arguments through the array v. This
old-style approach to variable-length arguments does enable vaTest() to take an arbitrary
number of arguments. However, it requires that these arguments be manually packaged
into an array prior to calling vaTest(). Not only is it tedious to construct an array each time
vaTest() is called, it is potentially error-prone. The varargs feature offers a simpler, better
option.

A variable-length argument is specified by three periods (...). For example, here is how
vaTest() is written using a vararg:

static void vaTest(int ... v) {

This syntax tells the compiler that vaTest() can be called with zero or more arguments. As a
result, v is implicitly declared as an array of type int[]. Thus, inside vaTest(), v is accessed
using the normal array syntax. Here is the preceding program rewritten using a vararg:

// Demonstrate variable-length arguments.
class VarArgs {

// vaTest() now uses a vararg.
static void vaTest(int ... v) {
System.out.print("Number of args: " + v.length +

" Contents: ");

for(int x : v)
System.out.print(x + " ");

System.out.println();
}

public static void main(String args[])
{

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 153

// Notice how vaTest() can be called with a
// variable number of arguments.
vaTest(10); // 1 arg
vaTest(1, 2, 3); // 3 args
vaTest(); // no args

}
}

The output from the program is the same as the original version.
There are two important things to notice about this program. First, as explained, inside

vaTest(), v is operated on as an array. This is because v is an array. The ... syntax simply tells
the compiler that a variable number of arguments will be used, and that these arguments will
be stored in the array referred to by v. Second, in main(), vaTest() is called with different
numbers of arguments, including no arguments at all. The arguments are automatically put
in an array and passed to v. In the case of no arguments, the length of the array is zero.

A method can have “normal” parameters along with a variable-length parameter. However,
the variable-length parameter must be the last parameter declared by the method. For example,
this method declaration is perfectly acceptable:

int doIt(int a, int b, double c, int ... vals) {

In this case, the first three arguments used in a call to doIt() are matched to the first three
parameters. Then, any remaining arguments are assumed to belong to vals.

Remember, the varargs parameter must be last. For example, the following declaration
is incorrect:

int doIt(int a, int b, double c, int ... vals, boolean stopFlag) { // Error!

Here, there is an attempt to declare a regular parameter after the varargs parameter, which
is illegal.

There is one more restriction to be aware of: there must be only one varargs parameter.
For example, this declaration is also invalid:

int doIt(int a, int b, double c, int ... vals, double ... morevals) { // Error!

The attempt to declare the second varargs parameter is illegal.
Here is a reworked version of the vaTest() method that takes a regular argument and

a variable-length argument:

// Use varargs with standard arguments.
class VarArgs2 {

// Here, msg is a normal parameter and v is a
// varargs parameter.
static void vaTest(String msg, int ... v) {
System.out.print(msg + v.length +

" Contents: ");

for(int x : v)
System.out.print(x + " ");

System.out.println();
}

154 P a r t I : T h e J a v a L a n g u a g e

public static void main(String args[])
{
vaTest("One vararg: ", 10);
vaTest("Three varargs: ", 1, 2, 3);
vaTest("No varargs: ");

}
}

The output from this program is shown here:

One vararg: 1 Contents: 10
Three varargs: 3 Contents: 1 2 3
No varargs: 0 Contents:

Overloading Vararg Methods
You can overload a method that takes a variable-length argument. For example, the following
program overloads vaTest() three times:

// Varargs and overloading.
class VarArgs3 {

static void vaTest(int ... v) {
System.out.print("vaTest(int ...): " +

"Number of args: " + v.length +
" Contents: ");

for(int x : v)
System.out.print(x + " ");

System.out.println();
}

static void vaTest(boolean ... v) {
System.out.print("vaTest(boolean ...) " +

"Number of args: " + v.length +
" Contents: ");

for(boolean x : v)
System.out.print(x + " ");

System.out.println();
}

static void vaTest(String msg, int ... v) {
System.out.print("vaTest(String, int ...): " +

msg + v.length +
" Contents: ");

for(int x : v)
System.out.print(x + " ");

System.out.println();
}

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 155

public static void main(String args[])
{
vaTest(1, 2, 3);
vaTest("Testing: ", 10, 20);
vaTest(true, false, false);

}
}

The output produced by this program is shown here:

vaTest(int ...): Number of args: 3 Contents: 1 2 3
vaTest(String, int ...): Testing: 2 Contents: 10 20
vaTest(boolean ...) Number of args: 3 Contents: true false false

This program illustrates both ways that a varargs method can be overloaded. First, the
types of its vararg parameter can differ. This is the case for vaTest(int ...) and vaTest(boolean
...). Remember, the ... causes the parameter to be treated as an array of the specified type.
Therefore, just as you can overload methods by using different types of array parameters,
you can overload vararg methods by using different types of varargs. In this case, Java uses
the type difference to determine which overloaded method to call.

The second way to overload a varargs method is to add a normal parameter. This is what
was done with vaTest(String, int ...). In this case, Java uses both the number of arguments and
the type of the arguments to determine which method to call.

NOTEOTE A varargs method can also be overloaded by a non-varargs method. For example, vaTest(int x)
is a valid overload of vaTest() in the foregoing program. This version is invoked only when one
int argument is present. When two or more int arguments are passed, the varargs version
vaTest(int…v) is used.

Varargs and Ambiguity
Somewhat unexpected errors can result when overloading a method that takes a variable-length
argument. These errors involve ambiguity because it is possible to create an ambiguous call to
an overloaded varargs method. For example, consider the following program:

// Varargs, overloading, and ambiguity.
//
// This program contains an error and will
// not compile!
class VarArgs4 {

static void vaTest(int ... v) {
System.out.print("vaTest(int ...): " +

"Number of args: " + v.length +
" Contents: ");

for(int x : v)
System.out.print(x + " ");

System.out.println();
}

156 P a r t I : T h e J a v a L a n g u a g e

static void vaTest(boolean ... v) {
System.out.print("vaTest(boolean ...) " +

"Number of args: " + v.length +
" Contents: ");

for(boolean x : v)
System.out.print(x + " ");

System.out.println();
}

public static void main(String args[])
{
vaTest(1, 2, 3); // OK
vaTest(true, false, false); // OK

vaTest(); // Error: Ambiguous!
}

}

In this program, the overloading of vaTest() is perfectly correct. However, this program
will not compile because of the following call:

vaTest(); // Error: Ambiguous!

Because the vararg parameter can be empty, this call could be translated into a call to
vaTest(int ...) or vaTest(boolean ...). Both are equally valid. Thus, the call is inherently
ambiguous.

Here is another example of ambiguity. The following overloaded versions of vaTest()
are inherently ambiguous even though one takes a normal parameter:

static void vaTest(int ... v) { // ...

static void vaTest(int n, int ... v) { // ...

Although the parameter lists of vaTest() differ, there is no way for the compiler to resolve
the following call:

vaTest(1)

Does this translate into a call to vaTest(int ...), with one varargs argument, or into a call to
vaTest(int, int ...) with no varargs arguments? There is no way for the compiler to answer
this question. Thus, the situation is ambiguous.

Because of ambiguity errors like those just shown, sometimes you will need to forego
overloading and simply use two different method names. Also, in some cases, ambiguity
errors expose a conceptual flaw in your code, which you can remedy by more carefully
crafting a solution.

8
Inheritance

Inheritance is one of the cornerstones of object-oriented programming because it allows
the creation of hierarchical classifications. Using inheritance, you can create a general
class that defines traits common to a set of related items. This class can then be inherited

by other, more specific classes, each adding those things that are unique to it. In the terminology
of Java, a class that is inherited is called a superclass. The class that does the inheriting is called
a subclass. Therefore, a subclass is a specialized version of a superclass. It inherits all of the
instance variables and methods defined by the superclass and adds its own, unique elements.

Inheritance Basics
To inherit a class, you simply incorporate the definition of one class into another by using
the extends keyword. To see how, let’s begin with a short example. The following program
creates a superclass called A and a subclass called B. Notice how the keyword extends is
used to create a subclass of A.

// A simple example of inheritance.

// Create a superclass.
class A {
int i, j;

void showij() {
System.out.println("i and j: " + i + " " + j);

}
}

// Create a subclass by extending class A.
class B extends A {
int k;

void showk() {
System.out.println("k: " + k);

}
void sum() {
System.out.println("i+j+k: " + (i+j+k));

}
}

1 5 7

class SimpleInheritance {
public static void main(String args[]) {
A superOb = new A();
B subOb = new B();

// The superclass may be used by itself.
superOb.i = 10;
superOb.j = 20;
System.out.println("Contents of superOb: ");
superOb.showij();
System.out.println();

/* The subclass has access to all public members of
its superclass. */

subOb.i = 7;
subOb.j = 8;
subOb.k = 9;
System.out.println("Contents of subOb: ");
subOb.showij();
subOb.showk();
System.out.println();

System.out.println("Sum of i, j and k in subOb:");
subOb.sum();

}
}

The output from this program is shown here:

Contents of superOb:
i and j: 10 20

Contents of subOb:
i and j: 7 8
k: 9

Sum of i, j and k in subOb:
i+j+k: 24

As you can see, the subclass B includes all of the members of its superclass, A. This is
why subOb can access i and j and call showij(). Also, inside sum(), i and j can be referred
to directly, as if they were part of B.

Even though A is a superclass for B, it is also a completely independent, stand-alone
class. Being a superclass for a subclass does not mean that the superclass cannot be used
by itself. Further, a subclass can be a superclass for another subclass.

The general form of a class declaration that inherits a superclass is shown here:

class subclass-name extends superclass-name {
// body of class

}

158 P a r t I : T h e J a v a L a n g u a g e

You can only specify one superclass for any subclass that you create. Java does not
support the inheritance of multiple superclasses into a single subclass. You can, as stated,
create a hierarchy of inheritance in which a subclass becomes a superclass of another subclass.
However, no class can be a superclass of itself.

Member Access and Inheritance
Although a subclass includes all of the members of its superclass, it cannot access those
members of the superclass that have been declared as private. For example, consider the
following simple class hierarchy:

/* In a class hierarchy, private members remain
private to their class.

This program contains an error and will not
compile.

*/

// Create a superclass.
class A {
int i; // public by default
private int j; // private to A

void setij(int x, int y) {
i = x;
j = y;

}
}

// A's j is not accessible here.
class B extends A {
int total;
void sum() {
total = i + j; // ERROR, j is not accessible here

}
}

class Access {
public static void main(String args[]) {
B subOb = new B();

subOb.setij(10, 12);

subOb.sum();
System.out.println("Total is " + subOb.total);

}
}

This program will not compile because the reference to j inside the sum() method of B
causes an access violation. Since j is declared as private, it is only accessible by other members
of its own class. Subclasses have no access to it.

C h a p t e r 8 : I n h e r i t a n c e 159

REMEMBEREMEMBER A class member that has been declared as private will remain private to its class. It is
not accessible by any code outside its class, including subclasses.

A More Practical Example
Let’s look at a more practical example that will help illustrate the power of inheritance.
Here, the final version of the Box class developed in the preceding chapter will be extended
to include a fourth component called weight. Thus, the new class will contain a box’s width,
height, depth, and weight.

// This program uses inheritance to extend Box.
class Box {
double width;
double height;
double depth;

// construct clone of an object
Box(Box ob) { // pass object to constructor
width = ob.width;
height = ob.height;
depth = ob.depth;

}

// constructor used when all dimensions specified
Box(double w, double h, double d) {
width = w;
height = h;
depth = d;

}

// constructor used when no dimensions specified
Box() {
width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box

}

// constructor used when cube is created
Box(double len) {
width = height = depth = len;

}

// compute and return volume
double volume() {
return width * height * depth;

}
}

// Here, Box is extended to include weight.
class BoxWeight extends Box {
double weight; // weight of box

160 P a r t I : T h e J a v a L a n g u a g e

C h a p t e r 8 : I n h e r i t a n c e 161

// constructor for BoxWeight
BoxWeight(double w, double h, double d, double m) {
width = w;
height = h;
depth = d;
weight = m;

}
}

class DemoBoxWeight {
public static void main(String args[]) {
BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);
BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);
double vol;

vol = mybox1.volume();
System.out.println("Volume of mybox1 is " + vol);
System.out.println("Weight of mybox1 is " + mybox1.weight);
System.out.println();

vol = mybox2.volume();
System.out.println("Volume of mybox2 is " + vol);
System.out.println("Weight of mybox2 is " + mybox2.weight);

}
}

The output from this program is shown here:

Volume of mybox1 is 3000.0
Weight of mybox1 is 34.3

Volume of mybox2 is 24.0
Weight of mybox2 is 0.076

BoxWeight inherits all of the characteristics of Box and adds to them the weight component.
It is not necessary for BoxWeight to re-create all of the features found in Box. It can simply
extend Box to meet its own purposes.

A major advantage of inheritance is that once you have created a superclass that defines
the attributes common to a set of objects, it can be used to create any number of more specific
subclasses. Each subclass can precisely tailor its own classification. For example, the following
class inherits Box and adds a color attribute:

// Here, Box is extended to include color.
class ColorBox extends Box {
int color; // color of box

ColorBox(double w, double h, double d, int c) {
width = w;
height = h;
depth = d;
color = c;

}
}

162 P a r t I : T h e J a v a L a n g u a g e

Remember, once you have created a superclass that defines the general aspects of an
object, that superclass can be inherited to form specialized classes. Each subclass simply
adds its own unique attributes. This is the essence of inheritance.

A Superclass Variable Can Reference a Subclass Object
A reference variable of a superclass can be assigned a reference to any subclass derived from
that superclass. You will find this aspect of inheritance quite useful in a variety of situations.
For example, consider the following:

class RefDemo {
public static void main(String args[]) {
BoxWeight weightbox = new BoxWeight(3, 5, 7, 8.37);
Box plainbox = new Box();
double vol;

vol = weightbox.volume();
System.out.println("Volume of weightbox is " + vol);
System.out.println("Weight of weightbox is " +

weightbox.weight);
System.out.println();

// assign BoxWeight reference to Box reference
plainbox = weightbox;

vol = plainbox.volume(); // OK, volume() defined in Box
System.out.println("Volume of plainbox is " + vol);

/* The following statement is invalid because plainbox
does not define a weight member. */

// System.out.println("Weight of plainbox is " + plainbox.weight);
}

}

Here, weightbox is a reference to BoxWeight objects, and plainbox is a reference to Box objects.
Since BoxWeight is a subclass of Box, it is permissible to assign plainbox a reference to the
weightbox object.

It is important to understand that it is the type of the reference variable—not the type of
the object that it refers to—that determines what members can be accessed. That is, when a
reference to a subclass object is assigned to a superclass reference variable, you will have access
only to those parts of the object defined by the superclass. This is why plainbox can’t access
weight even when it refers to a BoxWeight object. If you think about it, this makes sense,
because the superclass has no knowledge of what a subclass adds to it. This is why the last
line of code in the preceding fragment is commented out. It is not possible for a Box reference
to access the weight field, because Box does not define one.

Although the preceding may seem a bit esoteric, it has some important practical
applications—two of which are discussed later in this chapter.

C h a p t e r 8 : I n h e r i t a n c e 163

Using super
In the preceding examples, classes derived from Box were not implemented as efficiently or
as robustly as they could have been. For example, the constructor for BoxWeight explicitly
initializes the width, height, and depth fields of Box(). Not only does this duplicate code
found in its superclass, which is inefficient, but it implies that a subclass must be granted access
to these members. However, there will be times when you will want to create a superclass that
keeps the details of its implementation to itself (that is, that keeps its data members private).
In this case, there would be no way for a subclass to directly access or initialize these variables
on its own. Since encapsulation is a primary attribute of OOP, it is not surprising that Java
provides a solution to this problem. Whenever a subclass needs to refer to its immediate
superclass, it can do so by use of the keyword super.

super has two general forms. The first calls the superclass’ constructor. The second is
used to access a member of the superclass that has been hidden by a member of a subclass.
Each use is examined here.

Using super to Call Superclass Constructors
A subclass can call a constructor defined by its superclass by use of the following form of super:

super(arg-list);

Here, arg-list specifies any arguments needed by the constructor in the superclass. super()
must always be the first statement executed inside a subclass’ constructor.

To see how super() is used, consider this improved version of the BoxWeight() class:

// BoxWeight now uses super to initialize its Box attributes.
class BoxWeight extends Box {
double weight; // weight of box

// initialize width, height, and depth using super()
BoxWeight(double w, double h, double d, double m) {
super(w, h, d); // call superclass constructor
weight = m;

}
}

Here, BoxWeight() calls super() with the arguments w, h, and d. This causes the Box()
constructor to be called, which initializes width, height, and depth using these values.
BoxWeight no longer initializes these values itself. It only needs to initialize the value unique
to it: weight. This leaves Box free to make these values private if desired.

In the preceding example, super() was called with three arguments. Since constructors
can be overloaded, super() can be called using any form defined by the superclass. The
constructor executed will be the one that matches the arguments. For example, here is a
complete implementation of BoxWeight that provides constructors for the various ways

that a box can be constructed. In each case, super() is called using the appropriate arguments.
Notice that width, height, and depth have been made private within Box.

// A complete implementation of BoxWeight.
class Box {
private double width;
private double height;
private double depth;

// construct clone of an object
Box(Box ob) { // pass object to constructor
width = ob.width;
height = ob.height;
depth = ob.depth;

}

// constructor used when all dimensions specified
Box(double w, double h, double d) {
width = w;
height = h;
depth = d;

}

// constructor used when no dimensions specified
Box() {
width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box

}

// constructor used when cube is created
Box(double len) {
width = height = depth = len;

}

// compute and return volume
double volume() {
return width * height * depth;

}
}

// BoxWeight now fully implements all constructors.
class BoxWeight extends Box {
double weight; // weight of box

// construct clone of an object
BoxWeight(BoxWeight ob) { // pass object to constructor
super(ob);
weight = ob.weight;

}

// constructor when all parameters are specified
BoxWeight(double w, double h, double d, double m) {

164 P a r t I : T h e J a v a L a n g u a g e

super(w, h, d); // call superclass constructor
weight = m;

}

// default constructor
BoxWeight() {
super();
weight = -1;

}

// constructor used when cube is created
BoxWeight(double len, double m) {
super(len);
weight = m;

}
}

class DemoSuper {
public static void main(String args[]) {
BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);
BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);
BoxWeight mybox3 = new BoxWeight(); // default
BoxWeight mycube = new BoxWeight(3, 2);
BoxWeight myclone = new BoxWeight(mybox1);
double vol;

vol = mybox1.volume();
System.out.println("Volume of mybox1 is " + vol);
System.out.println("Weight of mybox1 is " + mybox1.weight);
System.out.println();

vol = mybox2.volume();
System.out.println("Volume of mybox2 is " + vol);
System.out.println("Weight of mybox2 is " + mybox2.weight);
System.out.println();

vol = mybox3.volume();
System.out.println("Volume of mybox3 is " + vol);
System.out.println("Weight of mybox3 is " + mybox3.weight);
System.out.println();

vol = myclone.volume();
System.out.println("Volume of myclone is " + vol);
System.out.println("Weight of myclone is " + myclone.weight);
System.out.println();

vol = mycube.volume();
System.out.println("Volume of mycube is " + vol);
System.out.println("Weight of mycube is " + mycube.weight);
System.out.println();

}
}

C h a p t e r 8 : I n h e r i t a n c e 165

166 P a r t I : T h e J a v a L a n g u a g e

This program generates the following output:

Volume of mybox1 is 3000.0
Weight of mybox1 is 34.3

Volume of mybox2 is 24.0
Weight of mybox2 is 0.076

Volume of mybox3 is -1.0
Weight of mybox3 is -1.0

Volume of myclone is 3000.0
Weight of myclone is 34.3

Volume of mycube is 27.0
Weight of mycube is 2.0

Pay special attention to this constructor in BoxWeight():

// construct clone of an object
BoxWeight(BoxWeight ob) { // pass object to constructor
super(ob);
weight = ob.weight;

}

Notice that super() is passed an object of type BoxWeight—not of type Box. This still
invokes the constructor Box(Box ob). As mentioned earlier, a superclass variable can be
used to reference any object derived from that class. Thus, we are able to pass a BoxWeight
object to the Box constructor. Of course, Box only has knowledge of its own members.

Let’s review the key concepts behind super(). When a subclass calls super(), it is calling
the constructor of its immediate superclass. Thus, super() always refers to the superclass
immediately above the calling class. This is true even in a multileveled hierarchy. Also, super()
must always be the first statement executed inside a subclass constructor.

A Second Use for super
The second form of super acts somewhat like this, except that it always refers to the superclass
of the subclass in which it is used. This usage has the following general form:

super.member

Here, member can be either a method or an instance variable.
This second form of super is most applicable to situations in which member names of

a subclass hide members by the same name in the superclass. Consider this simple class
hierarchy:

// Using super to overcome name hiding.
class A {
int i;

}

// Create a subclass by extending class A.
class B extends A {
int i; // this i hides the i in A

B(int a, int b) {
super.i = a; // i in A
i = b; // i in B

}

void show() {
System.out.println("i in superclass: " + super.i);
System.out.println("i in subclass: " + i);

}
}

class UseSuper {
public static void main(String args[]) {
B subOb = new B(1, 2);

subOb.show();
}

}

This program displays the following:

i in superclass: 1
i in subclass: 2

Although the instance variable i in B hides the i in A, super allows access to the i defined
in the superclass. As you will see, super can also be used to call methods that are hidden by a
subclass.

Creating a Multilevel Hierarchy
Up to this point, we have been using simple class hierarchies that consist of only a superclass
and a subclass. However, you can build hierarchies that contain as many layers of inheritance
as you like. As mentioned, it is perfectly acceptable to use a subclass as a superclass of another.
For example, given three classes called A, B, and C, C can be a subclass of B, which is a
subclass of A. When this type of situation occurs, each subclass inherits all of the traits
found in all of its superclasses. In this case, C inherits all aspects of B and A. To see how
a multilevel hierarchy can be useful, consider the following program. In it, the subclass
BoxWeight is used as a superclass to create the subclass called Shipment. Shipment inherits
all of the traits of BoxWeight and Box, and adds a field called cost, which holds the cost of
shipping such a parcel.

// Extend BoxWeight to include shipping costs.

// Start with Box.
class Box {
private double width;
private double height;
private double depth;

C h a p t e r 8 : I n h e r i t a n c e 167

168 P a r t I : T h e J a v a L a n g u a g e

// construct clone of an object
Box(Box ob) { // pass object to constructor
width = ob.width;
height = ob.height;
depth = ob.depth;

}

// constructor used when all dimensions specified
Box(double w, double h, double d) {
width = w;
height = h;
depth = d;

}

// constructor used when no dimensions specified
Box() {
width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box

}

// constructor used when cube is created
Box(double len) {
width = height = depth = len;

}

// compute and return volume
double volume() {
return width * height * depth;

}
}

// Add weight.
class BoxWeight extends Box {
double weight; // weight of box

// construct clone of an object
BoxWeight(BoxWeight ob) { // pass object to constructor
super(ob);
weight = ob.weight;

}
// constructor when all parameters are specified
BoxWeight(double w, double h, double d, double m) {
super(w, h, d); // call superclass constructor
weight = m;

}

// default constructor
BoxWeight() {
super();
weight = -1;

}

// constructor used when cube is created
BoxWeight(double len, double m) {
super(len);
weight = m;

}
}

// Add shipping costs.
class Shipment extends BoxWeight {
double cost;

// construct clone of an object
Shipment(Shipment ob) { // pass object to constructor
super(ob);
cost = ob.cost;

}

// constructor when all parameters are specified
Shipment(double w, double h, double d,

double m, double c) {
super(w, h, d, m); // call superclass constructor
cost = c;

}

// default constructor
Shipment() {
super();
cost = -1;

}

// constructor used when cube is created
Shipment(double len, double m, double c) {
super(len, m);
cost = c;

}
}

class DemoShipment {
public static void main(String args[]) {
Shipment shipment1 =

new Shipment(10, 20, 15, 10, 3.41);
Shipment shipment2 =

new Shipment(2, 3, 4, 0.76, 1.28);

double vol;

vol = shipment1.volume();
System.out.println("Volume of shipment1 is " + vol);
System.out.println("Weight of shipment1 is "

+ shipment1.weight);
System.out.println("Shipping cost: $" + shipment1.cost);
System.out.println();

C h a p t e r 8 : I n h e r i t a n c e 169

vol = shipment2.volume();
System.out.println("Volume of shipment2 is " + vol);
System.out.println("Weight of shipment2 is "

+ shipment2.weight);
System.out.println("Shipping cost: $" + shipment2.cost);

}
}

The output of this program is shown here:

Volume of shipment1 is 3000.0
Weight of shipment1 is 10.0
Shipping cost: $3.41

Volume of shipment2 is 24.0
Weight of shipment2 is 0.76
Shipping cost: $1.28

Because of inheritance, Shipment can make use of the previously defined classes of Box
and BoxWeight, adding only the extra information it needs for its own, specific application.
This is part of the value of inheritance; it allows the reuse of code.

This example illustrates one other important point: super() always refers to the constructor
in the closest superclass. The super() in Shipment calls the constructor in BoxWeight. The
super() in BoxWeight calls the constructor in Box. In a class hierarchy, if a superclass
constructor requires parameters, then all subclasses must pass those parameters “up the
line.” This is true whether or not a subclass needs parameters of its own.

NOTEOTE In the preceding program, the entire class hierarchy, including Box, BoxWeight, and
Shipment, is shown all in one file. This is for your convenience only. In Java, all three classes
could have been placed into their own files and compiled separately. In fact, using separate
files is the norm, not the exception, in creating class hierarchies.

When Constructors Are Called
When a class hierarchy is created, in what order are the constructors for the classes that make up
the hierarchy called? For example, given a subclass called B and a superclass called A, is A’s
constructor called before B’s, or vice versa? The answer is that in a class hierarchy, constructors
are called in order of derivation, from superclass to subclass. Further, since super() must be the
first statement executed in a subclass’ constructor, this order is the same whether or not super()
is used. If super() is not used, then the default or parameterless constructor of each superclass
will be executed. The following program illustrates when constructors are executed:

// Demonstrate when constructors are called.

// Create a super class.
class A {
A() {
System.out.println("Inside A's constructor.");

}
}

170 P a r t I : T h e J a v a L a n g u a g e

C h a p t e r 8 : I n h e r i t a n c e 171

// Create a subclass by extending class A.
class B extends A {
B() {
System.out.println("Inside B's constructor.");

}
}

// Create another subclass by extending B.
class C extends B {
C() {
System.out.println("Inside C's constructor.");

}
}

class CallingCons {
public static void main(String args[]) {
C c = new C();

}
}

The output from this program is shown here:

Inside A’s constructor
Inside B’s constructor
Inside C’s constructor

As you can see, the constructors are called in order of derivation.
If you think about it, it makes sense that constructors are executed in order of derivation.

Because a superclass has no knowledge of any subclass, any initialization it needs to perform
is separate from and possibly prerequisite to any initialization performed by the subclass.
Therefore, it must be executed first.

Method Overriding
In a class hierarchy, when a method in a subclass has the same name and type signature as
a method in its superclass, then the method in the subclass is said to override the method in
the superclass. When an overridden method is called from within a subclass, it will always
refer to the version of that method defined by the subclass. The version of the method defined
by the superclass will be hidden. Consider the following:

// Method overriding.
class A {
int i, j;
A(int a, int b) {
i = a;
j = b;

}

// display i and j
void show() {
System.out.println("i and j: " + i + " " + j);

}
}

class B extends A {
int k;

B(int a, int b, int c) {
super(a, b);
k = c;

}

// display k – this overrides show() in A
void show() {
System.out.println("k: " + k);

}
}

class Override {
public static void main(String args[]) {
B subOb = new B(1, 2, 3);

subOb.show(); // this calls show() in B
}

}

The output produced by this program is shown here:

k: 3

When show() is invoked on an object of type B, the version of show() defined within B
is used. That is, the version of show() inside B overrides the version declared in A.

If you wish to access the superclass version of an overridden method, you can do so by
using super. For example, in this version of B, the superclass version of show() is invoked
within the subclass’ version. This allows all instance variables to be displayed.

class B extends A {
int k;

B(int a, int b, int c) {
super(a, b);
k = c;

}
void show() {
super.show(); // this calls A's show()
System.out.println("k: " + k);

}
}

If you substitute this version of A into the previous program, you will see the following
output:

i and j: 1 2
k: 3

Here, super.show() calls the superclass version of show().

172 P a r t I : T h e J a v a L a n g u a g e

Method overriding occurs only when the names and the type signatures of the two
methods are identical. If they are not, then the two methods are simply overloaded. For
example, consider this modified version of the preceding example:

// Methods with differing type signatures are overloaded – not
// overridden.
class A {
int i, j;

A(int a, int b) {
i = a;
j = b;

}

// display i and j
void show() {
System.out.println("i and j: " + i + " " + j);

}
}

// Create a subclass by extending class A.
class B extends A {
int k;

B(int a, int b, int c) {
super(a, b);
k = c;

}

// overload show()
void show(String msg) {
System.out.println(msg + k);

}
}

class Override {
public static void main(String args[]) {
B subOb = new B(1, 2, 3);

subOb.show("This is k: "); // this calls show() in B
subOb.show(); // this calls show() in A

}
}

The output produced by this program is shown here:

This is k: 3
i and j: 1 2

The version of show() in B takes a string parameter. This makes its type signature
different from the one in A, which takes no parameters. Therefore, no overriding (or name
hiding) takes place. Instead, the version of show() in B simply overloads the version of
show() in A.

C h a p t e r 8 : I n h e r i t a n c e 173

174 P a r t I : T h e J a v a L a n g u a g e

Dynamic Method Dispatch
While the examples in the preceding section demonstrate the mechanics of method overriding,
they do not show its power. Indeed, if there were nothing more to method overriding than
a name space convention, then it would be, at best, an interesting curiosity, but of little real
value. However, this is not the case. Method overriding forms the basis for one of Java’s most
powerful concepts: dynamic method dispatch. Dynamic method dispatch is the mechanism
by which a call to an overridden method is resolved at run time, rather than compile time.
Dynamic method dispatch is important because this is how Java implements run-time
polymorphism.

Let’s begin by restating an important principle: a superclass reference variable can refer
to a subclass object. Java uses this fact to resolve calls to overridden methods at run time. Here
is how. When an overridden method is called through a superclass reference, Java determines
which version of that method to execute based upon the type of the object being referred
to at the time the call occurs. Thus, this determination is made at run time. When different
types of objects are referred to, different versions of an overridden method will be called.
In other words, it is the type of the object being referred to (not the type of the reference variable)
that determines which version of an overridden method will be executed. Therefore, if a
superclass contains a method that is overridden by a subclass, then when different types
of objects are referred to through a superclass reference variable, different versions of the
method are executed.

Here is an example that illustrates dynamic method dispatch:

// Dynamic Method Dispatch
class A {

void callme() {
System.out.println("Inside A's callme method");

}
}

class B extends A {
// override callme()
void callme() {
System.out.println("Inside B's callme method");

}
}

class C extends A {
// override callme()
void callme() {
System.out.println("Inside C's callme method");

}
}

class Dispatch {
public static void main(String args[]) {
A a = new A(); // object of type A
B b = new B(); // object of type B
C c = new C(); // object of type C
A r; // obtain a reference of type A

r = a; // r refers to an A object
r.callme(); // calls A's version of callme

r = b; // r refers to a B object
r.callme(); // calls B's version of callme

r = c; // r refers to a C object
r.callme(); // calls C's version of callme

}
}

The output from the program is shown here:

Inside A’s callme method
Inside B’s callme method
Inside C’s callme method

This program creates one superclass called A and two subclasses of it, called B and C.
Subclasses B and C override callme() declared in A. Inside the main() method, objects of
type A, B, and C are declared. Also, a reference of type A, called r, is declared. The program
then in turn assigns a reference to each type of object to r and uses that reference to invoke
callme(). As the output shows, the version of callme() executed is determined by the type
of object being referred to at the time of the call. Had it been determined by the type of the
reference variable, r, you would see three calls to A’s callme() method.

NOTEOTE Readers familiar with C++ or C# will recognize that overridden methods in Java are similar
to virtual functions in those languages.

Why Overridden Methods?
As stated earlier, overridden methods allow Java to support run-time polymorphism.
Polymorphism is essential to object-oriented programming for one reason: it allows a
general class to specify methods that will be common to all of its derivatives, while allowing
subclasses to define the specific implementation of some or all of those methods. Overridden
methods are another way that Java implements the “one interface, multiple methods” aspect
of polymorphism.

Part of the key to successfully applying polymorphism is understanding that the
superclasses and subclasses form a hierarchy which moves from lesser to greater specialization.
Used correctly, the superclass provides all elements that a subclass can use directly. It also
defines those methods that the derived class must implement on its own. This allows the
subclass the flexibility to define its own methods, yet still enforces a consistent interface.
Thus, by combining inheritance with overridden methods, a superclass can define the general
form of the methods that will be used by all of its subclasses.

Dynamic, run-time polymorphism is one of the most powerful mechanisms that object-
oriented design brings to bear on code reuse and robustness. The ability of existing code
libraries to call methods on instances of new classes without recompiling while maintaining
a clean abstract interface is a profoundly powerful tool.

C h a p t e r 8 : I n h e r i t a n c e 175

176 P a r t I : T h e J a v a L a n g u a g e

Applying Method Overriding
Let’s look at a more practical example that uses method overriding. The following program
creates a superclass called Figure that stores the dimensions of a two-dimensional object. It
also defines a method called area() that computes the area of an object. The program derives
two subclasses from Figure. The first is Rectangle and the second is Triangle. Each of
these subclasses overrides area() so that it returns the area of a rectangle and a triangle,
respectively.

// Using run-time polymorphism.
class Figure {
double dim1;
double dim2;

Figure(double a, double b) {
dim1 = a;
dim2 = b;

}

double area() {
System.out.println("Area for Figure is undefined.");
return 0;

}
}

class Rectangle extends Figure {
Rectangle(double a, double b) {
super(a, b);

}

// override area for rectangle
double area() {
System.out.println("Inside Area for Rectangle.");
return dim1 * dim2;

}
}

class Triangle extends Figure {
Triangle(double a, double b) {
super(a, b);

}

// override area for right triangle
double area() {
System.out.println("Inside Area for Triangle.");
return dim1 * dim2 / 2;

}
}

class FindAreas {
public static void main(String args[]) {
Figure f = new Figure(10, 10);
Rectangle r = new Rectangle(9, 5);
Triangle t = new Triangle(10, 8);

Figure figref;

figref = r;
System.out.println("Area is " + figref.area());

figref = t;
System.out.println("Area is " + figref.area());

figref = f;
System.out.println("Area is " + figref.area());

}
}

The output from the program is shown here:

Inside Area for Rectangle.
Area is 45
Inside Area for Triangle.
Area is 40
Area for Figure is undefined.
Area is 0

Through the dual mechanisms of inheritance and run-time polymorphism, it is possible
to define one consistent interface that is used by several different, yet related, types of objects.
In this case, if an object is derived from Figure, then its area can be obtained by calling area().
The interface to this operation is the same no matter what type of figure is being used.

Using Abstract Classes
There are situations in which you will want to define a superclass that declares the structure
of a given abstraction without providing a complete implementation of every method. That
is, sometimes you will want to create a superclass that only defines a generalized form that
will be shared by all of its subclasses, leaving it to each subclass to fill in the details. Such a
class determines the nature of the methods that the subclasses must implement. One way
this situation can occur is when a superclass is unable to create a meaningful implementation
for a method. This is the case with the class Figure used in the preceding example. The
definition of area() is simply a placeholder. It will not compute and display the area of any
type of object.

As you will see as you create your own class libraries, it is not uncommon for a method
to have no meaningful definition in the context of its superclass. You can handle this situation
two ways. One way, as shown in the previous example, is to simply have it report a warning
message. While this approach can be useful in certain situations—such as debugging—it is
not usually appropriate. You may have methods that must be overridden by the subclass
in order for the subclass to have any meaning. Consider the class Triangle. It has no meaning
if area() is not defined. In this case, you want some way to ensure that a subclass does, indeed,
override all necessary methods. Java’s solution to this problem is the abstract method.

You can require that certain methods be overridden by subclasses by specifying the
abstract type modifier. These methods are sometimes referred to as subclasser responsibility
because they have no implementation specified in the superclass. Thus, a subclass must

C h a p t e r 8 : I n h e r i t a n c e 177

override them—it cannot simply use the version defined in the superclass. To declare an
abstract method, use this general form:

abstract type name(parameter-list);

As you can see, no method body is present.
Any class that contains one or more abstract methods must also be declared abstract. To

declare a class abstract, you simply use the abstract keyword in front of the class keyword
at the beginning of the class declaration. There can be no objects of an abstract class. That is,
an abstract class cannot be directly instantiated with the new operator. Such objects would
be useless, because an abstract class is not fully defined. Also, you cannot declare abstract
constructors, or abstract static methods. Any subclass of an abstract class must either implement
all of the abstract methods in the superclass, or be itself declared abstract.

Here is a simple example of a class with an abstract method, followed by a class which
implements that method:

// A Simple demonstration of abstract.
abstract class A {
abstract void callme();

// concrete methods are still allowed in abstract classes
void callmetoo() {
System.out.println("This is a concrete method.");

}
}

class B extends A {
void callme() {
System.out.println("B's implementation of callme.");

}
}

class AbstractDemo {
public static void main(String args[]) {
B b = new B();

b.callme();
b.callmetoo();

}
}

Notice that no objects of class A are declared in the program. As mentioned, it is not
possible to instantiate an abstract class. One other point: class A implements a concrete
method called callmetoo(). This is perfectly acceptable. Abstract classes can include as
much implementation as they see fit.

Although abstract classes cannot be used to instantiate objects, they can be used to create
object references, because Java’s approach to run-time polymorphism is implemented through
the use of superclass references. Thus, it must be possible to create a reference to an abstract
class so that it can be used to point to a subclass object. You will see this feature put to use in
the next example.

178 P a r t I : T h e J a v a L a n g u a g e

Using an abstract class, you can improve the Figure class shown earlier. Since there is no
meaningful concept of area for an undefined two-dimensional figure, the following version
of the program declares area() as abstract inside Figure. This, of course, means that all classes
derived from Figure must override area().

// Using abstract methods and classes.
abstract class Figure {
double dim1;
double dim2;

Figure(double a, double b) {
dim1 = a;
dim2 = b;

}

// area is now an abstract method
abstract double area();

}

class Rectangle extends Figure {
Rectangle(double a, double b) {
super(a, b);

}

// override area for rectangle
double area() {
System.out.println("Inside Area for Rectangle.");
return dim1 * dim2;

}
}

class Triangle extends Figure {
Triangle(double a, double b) {
super(a, b);

}

// override area for right triangle
double area() {
System.out.println("Inside Area for Triangle.");
return dim1 * dim2 / 2;

}
}

class AbstractAreas {
public static void main(String args[]) {
// Figure f = new Figure(10, 10); // illegal now
Rectangle r = new Rectangle(9, 5);
Triangle t = new Triangle(10, 8);
Figure figref; // this is OK, no object is created

figref = r;
System.out.println("Area is " + figref.area());

C h a p t e r 8 : I n h e r i t a n c e 179

figref = t;
System.out.println("Area is " + figref.area());

}
}

As the comment inside main() indicates, it is no longer possible to declare objects of
type Figure, since it is now abstract. And, all subclasses of Figure must override area(). To
prove this to yourself, try creating a subclass that does not override area(). You will receive
a compile-time error.

Although it is not possible to create an object of type Figure, you can create a reference
variable of type Figure. The variable figref is declared as a reference to Figure, which means
that it can be used to refer to an object of any class derived from Figure. As explained, it is
through superclass reference variables that overridden methods are resolved at run time.

Using final with Inheritance
The keyword final has three uses. First, it can be used to create the equivalent of a named
constant. This use was described in the preceding chapter. The other two uses of final apply
to inheritance. Both are examined here.

Using final to Prevent Overriding
While method overriding is one of Java’s most powerful features, there will be times when
you will want to prevent it from occurring. To disallow a method from being overridden,
specify final as a modifier at the start of its declaration. Methods declared as final cannot
be overridden. The following fragment illustrates final:

class A {
final void meth() {
System.out.println("This is a final method.");

}
}

class B extends A {
void meth() { // ERROR! Can't override.
System.out.println("Illegal!");

}
}

Because meth() is declared as final, it cannot be overridden in B. If you attempt to do
so, a compile-time error will result.

Methods declared as final can sometimes provide a performance enhancement: The
compiler is free to inline calls to them because it “knows” they will not be overridden
by a subclass. When a small final method is called, often the Java compiler can copy the
bytecode for the subroutine directly inline with the compiled code of the calling method,
thus eliminating the costly overhead associated with a method call. Inlining is only an
option with final methods. Normally, Java resolves calls to methods dynamically, at run
time. This is called late binding. However, since final methods cannot be overridden, a call
to one can be resolved at compile time. This is called early binding.

180 P a r t I : T h e J a v a L a n g u a g e

C h a p t e r 8 : I n h e r i t a n c e 181

Using final to Prevent Inheritance
Sometimes you will want to prevent a class from being inherited. To do this, precede the
class declaration with final. Declaring a class as final implicitly declares all of its methods
as final, too. As you might expect, it is illegal to declare a class as both abstract and final
since an abstract class is incomplete by itself and relies upon its subclasses to provide
complete implementations.

Here is an example of a final class:

final class A {
// ...

}

// The following class is illegal.
class B extends A { // ERROR! Can't subclass A
// ...

}

As the comments imply, it is illegal for B to inherit A since A is declared as final.

The Object Class
There is one special class, Object, defined by Java. All other classes are subclasses of Object.
That is, Object is a superclass of all other classes. This means that a reference variable of type
Object can refer to an object of any other class. Also, since arrays are implemented as classes,
a variable of type Object can also refer to any array.

Object defines the following methods, which means that they are available in every object.

Method Purpose

Object clone() Creates a new object that is the same as the object being cloned.

boolean equals(Object object) Determines whether one object is equal to another.

void finalize() Called before an unused object is recycled.

Class getClass() Obtains the class of an object at run time.

int hashCode() Returns the hash code associated with the invoking object.

void notify() Resumes execution of a thread waiting on the invoking object.

void notifyAll() Resumes execution of all threads waiting on the invoking object.

String toString() Returns a string that describes the object.

void wait()
void wait(long milliseconds)
void wait(long milliseconds,

int nanoseconds)

Waits on another thread of execution.

The methods getClass(), notify(), notifyAll(), and wait() are declared as final. You
may override the others. These methods are described elsewhere in this book. However,
notice two methods now: equals() and toString(). The equals() method compares the
contents of two objects. It returns true if the objects are equivalent, and false otherwise.

	Part I: The Java Language
	6 Introducing Classes
	Class Fundamentals
	Declaring Objects
	Assigning Object Reference Variables
	Introducing Methods
	Constructors
	The this Keyword
	Garbage Collection
	The finalize() Method
	A Stack Class

	7 A Closer Look at Methods and Classes
	Overloading Methods
	Using Objects as Parameters
	A Closer Look at Argument Passing
	Returning Objects
	Recursion
	Introducing Access Control
	Understanding static
	Introducing final
	Arrays Revisited
	Introducing Nested and Inner Classes
	Exploring the String Class
	Using Command-Line Arguments
	Varargs: Variable-Length Arguments

	8 Inheritance
	Inheritance Basics
	Using super
	Creating a Multilevel Hierarchy
	When Constructors Are Called
	Method Overriding
	Dynamic Method Dispatch
	Using Abstract Classes
	Using final with Inheritance
	The Object Class

