
4
Operators

Java provides a rich operator environment. Most of its operators can be divided into the
following four groups: arithmetic, bitwise, relational, and logical. Java also defines some
additional operators that handle certain special situations. This chapter describes all

of Java’s operators except for the type comparison operator instanceof, which is examined
in Chapter 13.

Arithmetic Operators
Arithmetic operators are used in mathematical expressions in the same way that they are
used in algebra. The following table lists the arithmetic operators:

Operator Result

+ Addition

– Subtraction (also unary minus)

* Multiplication

/ Division

% Modulus

++ Increment

+= Addition assignment

–= Subtraction assignment

*= Multiplication assignment

/= Division assignment

%= Modulus assignment

– – Decrement

The operands of the arithmetic operators must be of a numeric type. You cannot use
them on boolean types, but you can use them on char types, since the char type in Java is,
essentially, a subset of int.

5 7

58 P a r t I : T h e J a v a L a n g u a g e

The Basic Arithmetic Operators
The basic arithmetic operations—addition, subtraction, multiplication, and division— all
behave as you would expect for all numeric types. The minus operator also has a unary form
that negates its single operand. Remember that when the division operator is applied to an
integer type, there will be no fractional component attached to the result.

The following simple example program demonstrates the arithmetic operators. It also
illustrates the difference between floating-point division and integer division.

// Demonstrate the basic arithmetic operators.
class BasicMath {
public static void main(String args[]) {
// arithmetic using integers
System.out.println("Integer Arithmetic");
int a = 1 + 1;
int b = a * 3;
int c = b / 4;
int d = c - a;
int e = -d;
System.out.println("a = " + a);
System.out.println("b = " + b);
System.out.println("c = " + c);
System.out.println("d = " + d);
System.out.println("e = " + e);

// arithmetic using doubles
System.out.println("\nFloating Point Arithmetic");
double da = 1 + 1;
double db = da * 3;
double dc = db / 4;
double dd = dc - a;
double de = -dd;
System.out.println("da = " + da);
System.out.println("db = " + db);
System.out.println("dc = " + dc);
System.out.println("dd = " + dd);
System.out.println("de = " + de);

}
}

When you run this program, you will see the following output:

Integer Arithmetic
a = 2
b = 6
c = 1
d = -1
e = 1

Floating Point Arithmetic
da = 2.0
db = 6.0

C h a p t e r 4 : O p e r a t o r s 59

dc = 1.5
dd = -0.5
de = 0.5

The Modulus Operator
The modulus operator, %, returns the remainder of a division operation. It can be applied to
floating-point types as well as integer types. The following example program demonstrates
the %:

// Demonstrate the % operator.
class Modulus {
public static void main(String args[]) {
int x = 42;
double y = 42.25;

System.out.println("x mod 10 = " + x % 10);
System.out.println("y mod 10 = " + y % 10);

}
}

When you run this program, you will get the following output:

x mod 10 = 2
y mod 10 = 2.25

Arithmetic Compound Assignment Operators
Java provides special operators that can be used to combine an arithmetic operation with
an assignment. As you probably know, statements like the following are quite common in
programming:

a = a + 4;

In Java, you can rewrite this statement as shown here:

a += 4;

This version uses the += compound assignment operator. Both statements perform the same
action: they increase the value of a by 4.

Here is another example,

a = a % 2;

which can be expressed as

a %= 2;

In this case, the %= obtains the remainder of a/2 and puts that result back into a.
There are compound assignment operators for all of the arithmetic, binary operators.

Thus, any statement of the form

var = var op expression;

60 P a r t I : T h e J a v a L a n g u a g e

can be rewritten as

var op= expression;

The compound assignment operators provide two benefits. First, they save you a bit of
typing, because they are “shorthand” for their equivalent long forms. Second, they are
implemented more efficiently by the Java run-time system than are their equivalent long
forms. For these reasons, you will often see the compound assignment operators used in
professionally written Java programs.

Here is a sample program that shows several op= assignments in action:

// Demonstrate several assignment operators.
class OpEquals {
public static void main(String args[]) {
int a = 1;
int b = 2;
int c = 3;

a += 5;
b *= 4;
c += a * b;
c %= 6;
System.out.println("a = " + a);
System.out.println("b = " + b);
System.out.println("c = " + c);

}
}

The output of this program is shown here:

a = 6
b = 8
c = 3

Increment and Decrement
The ++ and the – – are Java’s increment and decrement operators. They were introduced
in Chapter 2. Here they will be discussed in detail. As you will see, they have some special
properties that make them quite interesting. Let’s begin by reviewing precisely what the
increment and decrement operators do.

The increment operator increases its operand by one. The decrement operator decreases
its operand by one. For example, this statement:

x = x + 1;

can be rewritten like this by use of the increment operator:

x++;

Similarly, this statement:

x = x - 1;

C h a p t e r 4 : O p e r a t o r s 61

is equivalent to

x--;

These operators are unique in that they can appear both in postfix form, where they
follow the operand as just shown, and prefix form, where they precede the operand. In the
foregoing examples, there is no difference between the prefix and postfix forms. However,
when the increment and/or decrement operators are part of a larger expression, then a
subtle, yet powerful, difference between these two forms appears. In the prefix form, the
operand is incremented or decremented before the value is obtained for use in the expression.
In postfix form, the previous value is obtained for use in the expression, and then the operand
is modified. For example:

x = 42;
y = ++x;

In this case, y is set to 43 as you would expect, because the increment occurs before x is assigned
to y. Thus, the line y = ++x; is the equivalent of these two statements:

x = x + 1;
y = x;

However, when written like this,

x = 42;
y = x++;

the value of x is obtained before the increment operator is executed, so the value of y is 42.
Of course, in both cases x is set to 43. Here, the line y = x++; is the equivalent of these two
statements:

y = x;
x = x + 1;

The following program demonstrates the increment operator.

// Demonstrate ++.
class IncDec {
public static void main(String args[]) {
int a = 1;
int b = 2;
int c;
int d;
c = ++b;
d = a++;
c++;
System.out.println("a = " + a);
System.out.println("b = " + b);
System.out.println("c = " + c);
System.out.println("d = " + d);

}
}

62 P a r t I : T h e J a v a L a n g u a g e

The output of this program follows:

a = 2
b = 3
c = 4
d = 1

The Bitwise Operators
Java defines several bitwise operators that can be applied to the integer types, long, int, short,
char, and byte. These operators act upon the individual bits of their operands. They are
summarized in the following table:

Operator Result

~ Bitwise unary NOT

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

>> Shift right

>>> Shift right zero fill

<< Shift left

&= Bitwise AND assignment

|= Bitwise OR assignment

^= Bitwise exclusive OR assignment

>>= Shift right assignment

>>>= Shift right zero fill assignment

<<= Shift left assignment

Since the bitwise operators manipulate the bits within an integer, it is important to
understand what effects such manipulations may have on a value. Specifically, it is useful
to know how Java stores integer values and how it represents negative numbers. So, before
continuing, let’s briefly review these two topics.

All of the integer types are represented by binary numbers of varying bit widths. For
example, the byte value for 42 in binary is 00101010, where each position represents a power
of two, starting with 20 at the rightmost bit. The next bit position to the left would be 21, or 2,
continuing toward the left with 22, or 4, then 8, 16, 32, and so on. So 42 has 1 bits set at positions
1, 3, and 5 (counting from 0 at the right); thus, 42 is the sum of 21 + 23 + 25, which is 2 + 8 + 32.

All of the integer types (except char) are signed integers. This means that they can represent
negative values as well as positive ones. Java uses an encoding known as two’s complement,
which means that negative numbers are represented by inverting (changing 1’s to 0’s and
vice versa) all of the bits in a value, then adding 1 to the result. For example, –42 is represented
by inverting all of the bits in 42, or 00101010, which yields 11010101, then adding 1, which
results in 11010110, or –42. To decode a negative number, first invert all of the bits, then add 1.
For example, –42, or 11010110 inverted, yields 00101001, or 41, so when you add 1 you get 42.

C h a p t e r 4 : O p e r a t o r s 63

The reason Java (and most other computer languages) uses two’s complement is easy to
see when you consider the issue of zero crossing. Assuming a byte value, zero is represented by
00000000. In one’s complement, simply inverting all of the bits creates 11111111, which creates
negative zero. The trouble is that negative zero is invalid in integer math. This problem is solved
by using two’s complement to represent negative values. When using two’s complement, 1 is
added to the complement, producing 100000000. This produces a 1 bit too far to the left to
fit back into the byte value, resulting in the desired behavior, where –0 is the same as 0, and
11111111 is the encoding for –1. Although we used a byte value in the preceding example,
the same basic principle applies to all of Java’s integer types.

Because Java uses two’s complement to store negative numbers—and because all
integers are signed values in Java—applying the bitwise operators can easily produce
unexpected results. For example, turning on the high-order bit will cause the resulting
value to be interpreted as a negative number, whether this is what you intended or not.
To avoid unpleasant surprises, just remember that the high-order bit determines the sign
of an integer no matter how that high-order bit gets set.

The Bitwise Logical Operators
The bitwise logical operators are &, |, ^, and ~. The following table shows the outcome of
each operation. In the discussion that follows, keep in mind that the bitwise operators are
applied to each individual bit within each operand.

A B A | B A & B A ^ B ~A

0 0 0 0 0 1

1 0 1 0 1 0

0 1 1 0 1 1

1 1 1 1 0 0

The Bitwise NOT
Also called the bitwise complement, the unary NOT operator, ~, inverts all of the bits of its
operand. For example, the number 42, which has the following bit pattern:

00101010

becomes

11010101

after the NOT operator is applied.

The Bitwise AND
The AND operator, &, produces a 1 bit if both operands are also 1. A zero is produced in all
other cases. Here is an example:

00101010 42
& 00001111 15

00001010 10

64 P a r t I : T h e J a v a L a n g u a g e

The Bitwise OR
The OR operator, |, combines bits such that if either of the bits in the operands is a 1, then
the resultant bit is a 1, as shown here:

00101010 42
| 00001111 15

00101111 47

The Bitwise XOR
The XOR operator, ^, combines bits such that if exactly one operand is 1, then the result is 1.
Otherwise, the result is zero. The following example shows the effect of the ^. This example
also demonstrates a useful attribute of the XOR operation. Notice how the bit pattern of 42
is inverted wherever the second operand has a 1 bit. Wherever the second operand has a 0 bit,
the first operand is unchanged. You will find this property useful when performing some
types of bit manipulations.

00101010 42
^ 00001111 15

00100101 37

Using the Bitwise Logical Operators
The following program demonstrates the bitwise logical operators:

// Demonstrate the bitwise logical operators.
class BitLogic {
public static void main(String args[]) {
String binary[] = {
"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111",
"1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"

};
int a = 3; // 0 + 2 + 1 or 0011 in binary
int b = 6; // 4 + 2 + 0 or 0110 in binary
int c = a | b;
int d = a & b;
int e = a ^ b;
int f = (~a & b) | (a & ~b);
int g = ~a & 0x0f;

System.out.println(" a = " + binary[a]);
System.out.println(" b = " + binary[b]);
System.out.println(" a|b = " + binary[c]);
System.out.println(" a&b = " + binary[d]);
System.out.println(" a^b = " + binary[e]);
System.out.println("~a&b|a&~b = " + binary[f]);
System.out.println(" ~a = " + binary[g]);

}
}

In this example, a and b have bit patterns that present all four possibilities for two
binary digits: 0-0, 0-1, 1-0, and 1-1. You can see how the | and & operate on each bit by the
results in c and d. The values assigned to e and f are the same and illustrate how the ^ works.
The string array named binary holds the human-readable, binary representation of the numbers
0 through 15. In this example, the array is indexed to show the binary representation of each
result. The array is constructed such that the correct string representation of a binary value
n is stored in binary[n]. The value of ~a is ANDed with 0x0f (0000 1111 in binary) in order
to reduce its value to less than 16, so it can be printed by use of the binary array. Here is the
output from this program:

a = 0011
b = 0110

a|b = 0111
a&b = 0010
a^b = 0101

~a&b|a&~b = 0101
~a = 1100

The Left Shift
The left shift operator, <<, shifts all of the bits in a value to the left a specified number of times.
It has this general form:

value << num

Here, num specifies the number of positions to left-shift the value in value. That is, the <<
moves all of the bits in the specified value to the left by the number of bit positions specified
by num. For each shift left, the high-order bit is shifted out (and lost), and a zero is brought
in on the right. This means that when a left shift is applied to an int operand, bits are lost
once they are shifted past bit position 31. If the operand is a long, then bits are lost after bit
position 63.

Java’s automatic type promotions produce unexpected results when you are shifting
byte and short values. As you know, byte and short values are promoted to int when an
expression is evaluated. Furthermore, the result of such an expression is also an int. This
means that the outcome of a left shift on a byte or short value will be an int, and the bits
shifted left will not be lost until they shift past bit position 31. Furthermore, a negative byte
or short value will be sign-extended when it is promoted to int. Thus, the high-order bits
will be filled with 1’s. For these reasons, to perform a left shift on a byte or short implies
that you must discard the high-order bytes of the int result. For example, if you left-shift
a byte value, that value will first be promoted to int and then shifted. This means that you
must discard the top three bytes of the result if what you want is the result of a shifted byte
value. The easiest way to do this is to simply cast the result back into a byte. The following
program demonstrates this concept:

// Left shifting a byte value.
class ByteShift {
public static void main(String args[]) {
byte a = 64, b;
int i;

C h a p t e r 4 : O p e r a t o r s 65

i = a << 2;
b = (byte) (a << 2);

System.out.println("Original value of a: " + a);
System.out.println("i and b: " + i + " " + b);

}
}

The output generated by this program is shown here:

Original value of a: 64
i and b: 256 0

Since a is promoted to int for the purposes of evaluation, left-shifting the value 64
(0100 0000) twice results in i containing the value 256 (1 0000 0000). However, the value
in b contains 0 because after the shift, the low-order byte is now zero. Its only 1 bit has
been shifted out.

Since each left shift has the effect of doubling the original value, programmers frequently
use this fact as an efficient alternative to multiplying by 2. But you need to watch out. If you
shift a 1 bit into the high-order position (bit 31 or 63), the value will become negative. The
following program illustrates this point:

// Left shifting as a quick way to multiply by 2.
class MultByTwo {
public static void main(String args[]) {
int i;
int num = 0xFFFFFFE;

for(i=0; i<4; i++) {
num = num << 1;
System.out.println(num);

}
}

}

The program generates the following output:

536870908
1073741816
2147483632
-32

The starting value was carefully chosen so that after being shifted left 4 bit positions, it
would produce –32. As you can see, when a 1 bit is shifted into bit 31, the number is interpreted
as negative.

The Right Shift
The right shift operator, >>, shifts all of the bits in a value to the right a specified number of
times. Its general form is shown here:

value >> num

66 P a r t I : T h e J a v a L a n g u a g e

C h a p t e r 4 : O p e r a t o r s 67

Here, num specifies the number of positions to right-shift the value in value. That is, the >>
moves all of the bits in the specified value to the right the number of bit positions specified
by num.

The following code fragment shifts the value 32 to the right by two positions, resulting
in a being set to 8:

int a = 32;
a = a >> 2; // a now contains 8

When a value has bits that are “shifted off,” those bits are lost. For example, the next
code fragment shifts the value 35 to the right two positions, which causes the two low-order
bits to be lost, resulting again in a being set to 8.

int a = 35;
a = a >> 2; // a still contains 8

Looking at the same operation in binary shows more clearly how this happens:

00100011 35
>> 2
00001000 8

Each time you shift a value to the right, it divides that value by two—and discards any
remainder. You can take advantage of this for high-performance integer division by 2. Of
course, you must be sure that you are not shifting any bits off the right end.

When you are shifting right, the top (leftmost) bits exposed by the right shift are filled in
with the previous contents of the top bit. This is called sign extension and serves to preserve
the sign of negative numbers when you shift them right. For example, –8 >> 1 is –4, which,
in binary, is

11111000 –8
>>1
11111100 –4

It is interesting to note that if you shift –1 right, the result always remains –1, since sign
extension keeps bringing in more ones in the high-order bits.

Sometimes it is not desirable to sign-extend values when you are shifting them to the
right. For example, the following program converts a byte value to its hexadecimal string
representation. Notice that the shifted value is masked by ANDing it with 0x0f to discard
any sign-extended bits so that the value can be used as an index into the array of hexadecimal
characters.

// Masking sign extension.
class HexByte {
static public void main(String args[]) {
char hex[] = {
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f'

};

byte b = (byte) 0xf1;

System.out.println("b = 0x" + hex[(b >> 4) & 0x0f] + hex[b & 0x0f]);
}

}

Here is the output of this program:

b = 0xf1

The Unsigned Right Shift
As you have just seen, the >> operator automatically fills the high-order bit with its previous
contents each time a shift occurs. This preserves the sign of the value. However, sometimes
this is undesirable. For example, if you are shifting something that does not represent a numeric
value, you may not want sign extension to take place. This situation is common when you
are working with pixel-based values and graphics. In these cases, you will generally want to
shift a zero into the high-order bit no matter what its initial value was. This is known as an
unsigned shift. To accomplish this, you will use Java’s unsigned, shift-right operator, >>>,
which always shifts zeros into the high-order bit.

The following code fragment demonstrates the >>>. Here, a is set to –1, which sets all
32 bits to 1 in binary. This value is then shifted right 24 bits, filling the top 24 bits with zeros,
ignoring normal sign extension. This sets a to 255.

int a = -1;
a = a >>> 24;

Here is the same operation in binary form to further illustrate what is happening:

11111111 11111111 11111111 11111111 –1 in binary as an int
>>>24
00000000 00000000 00000000 11111111 255 in binary as an int

The >>> operator is often not as useful as you might like, since it is only meaningful
for 32- and 64-bit values. Remember, smaller values are automatically promoted to int in
expressions. This means that sign-extension occurs and that the shift will take place on a
32-bit rather than on an 8- or 16-bit value. That is, one might expect an unsigned right shift
on a byte value to zero-fill beginning at bit 7. But this is not the case, since it is a 32-bit value
that is actually being shifted. The following program demonstrates this effect:

// Unsigned shifting a byte value.
class ByteUShift {
static public void main(String args[]) {
char hex[] = {
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f'

};
byte b = (byte) 0xf1;
byte c = (byte) (b >> 4);
byte d = (byte) (b >>> 4);
byte e = (byte) ((b & 0xff) >> 4);

68 P a r t I : T h e J a v a L a n g u a g e

C h a p t e r 4 : O p e r a t o r s 69

System.out.println(" b = 0x"
+ hex[(b >> 4) & 0x0f] + hex[b & 0x0f]);

System.out.println(" b >> 4 = 0x"
+ hex[(c >> 4) & 0x0f] + hex[c & 0x0f]);

System.out.println(" b >>> 4 = 0x"
+ hex[(d >> 4) & 0x0f] + hex[d & 0x0f]);

System.out.println("(b & 0xff) >> 4 = 0x"
+ hex[(e >> 4) & 0x0f] + hex[e & 0x0f]);

}
}

The following output of this program shows how the >>> operator appears to do nothing
when dealing with bytes. The variable b is set to an arbitrary negative byte value for this
demonstration. Then c is assigned the byte value of b shifted right by four, which is 0xff
because of the expected sign extension. Then d is assigned the byte value of b unsigned
shifted right by four, which you might have expected to be 0x0f, but is actually 0xff because
of the sign extension that happened when b was promoted to int before the shift. The last
expression sets e to the byte value of b masked to 8 bits using the AND operator, then shifted
right by four, which produces the expected value of 0x0f. Notice that the unsigned shift right
operator was not used for d, since the state of the sign bit after the AND was known.

b = 0xf1
b >> 4 = 0xff

b >>> 4 = 0xff
(b & 0xff) >> 4 = 0x0f

Bitwise Operator Compound Assignments
All of the binary bitwise operators have a compound form similar to that of the algebraic
operators, which combines the assignment with the bitwise operation. For example, the
following two statements, which shift the value in a right by four bits, are equivalent:

a = a >> 4;
a >>= 4;

Likewise, the following two statements, which result in a being assigned the bitwise
expression a OR b, are equivalent:

a = a | b;
a |= b;

The following program creates a few integer variables and then uses compound bitwise
operator assignments to manipulate the variables:

class OpBitEquals {
public static void main(String args[]) {
int a = 1;
int b = 2;
int c = 3;

a |= 4;
b >>= 1;

70 P a r t I : T h e J a v a L a n g u a g e

c <<= 1;
a ^= c;
System.out.println("a = " + a);
System.out.println("b = " + b);
System.out.println("c = " + c);

}
}

The output of this program is shown here:

a = 3
b = 1
c = 6

Relational Operators
The relational operators determine the relationship that one operand has to the other.
Specifically, they determine equality and ordering. The relational operators are shown here:

Operator Result

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

The outcome of these operations is a boolean value. The relational operators are most
frequently used in the expressions that control the if statement and the various loop statements.

Any type in Java, including integers, floating-point numbers, characters, and Booleans
can be compared using the equality test, ==, and the inequality test, !=. Notice that in Java
equality is denoted with two equal signs, not one. (Remember: a single equal sign is the
assignment operator.) Only numeric types can be compared using the ordering operators.
That is, only integer, floating-point, and character operands may be compared to see which
is greater or less than the other.

As stated, the result produced by a relational operator is a boolean value. For example,
the following code fragment is perfectly valid:

int a = 4;
int b = 1;
boolean c = a < b;

In this case, the result of a<b (which is false) is stored in c.
If you are coming from a C/C++ background, please note the following. In C/C++, these

types of statements are very common:

int done;
// ...
if(!done) ... // Valid in C/C++
if(done) ... // but not in Java.

In Java, these statements must be written like this:

if(done == 0) ... // This is Java-style.
if(done != 0) ...

The reason is that Java does not define true and false in the same way as C/C++. In C/C++,
true is any nonzero value and false is zero. In Java, true and false are nonnumeric values that
do not relate to zero or nonzero. Therefore, to test for zero or nonzero, you must explicitly
employ one or more of the relational operators.

Boolean Logical Operators
The Boolean logical operators shown here operate only on boolean operands. All of the
binary logical operators combine two boolean values to form a resultant boolean value.

Operator Result

& Logical AND

| Logical OR

^ Logical XOR (exclusive OR)

|| Short-circuit OR

&& Short-circuit AND

! Logical unary NOT

&= AND assignment

|= OR assignment

^= XOR assignment

== Equal to

!= Not equal to

?: Ternary if-then-else

The logical Boolean operators, &, |, and ^, operate on boolean values in the same way
that they operate on the bits of an integer. The logical ! operator inverts the Boolean state:
!true == false and !false == true. The following table shows the effect of each logical operation:

A B A | B A & B A ^ B !A

False False False False False True

True False True False True False

False True True False True True

True True True True False False

C h a p t e r 4 : O p e r a t o r s 71

Here is a program that is almost the same as the BitLogic example shown earlier, but it
operates on boolean logical values instead of binary bits:

// Demonstrate the boolean logical operators.
class BoolLogic {
public static void main(String args[]) {
boolean a = true;
boolean b = false;
boolean c = a | b;
boolean d = a & b;
boolean e = a ^ b;
boolean f = (!a & b) | (a & !b);
boolean g = !a;
System.out.println(" a = " + a);
System.out.println(" b = " + b);
System.out.println(" a|b = " + c);
System.out.println(" a&b = " + d);
System.out.println(" a^b = " + e);
System.out.println("!a&b|a&!b = " + f);
System.out.println(" !a = " + g);

}
}

After running this program, you will see that the same logical rules apply to boolean
values as they did to bits. As you can see from the following output, the string representation
of a Java boolean value is one of the literal values true or false:

a = true
b = false

a|b = true
a&b = false
a^b = true

a&b|a&!b = true
!a = false

Short-Circuit Logical Operators
Java provides two interesting Boolean operators not found in many other computer languages.
These are secondary versions of the Boolean AND and OR operators, and are known as
short-circuit logical operators. As you can see from the preceding table, the OR operator
results in true when A is true, no matter what B is. Similarly, the AND operator results in
false when A is false, no matter what B is. If you use the || and && forms, rather than the
| and & forms of these operators, Java will not bother to evaluate the right-hand operand
when the outcome of the expression can be determined by the left operand alone. This is
very useful when the right-hand operand depends on the value of the left one in order
to function properly. For example, the following code fragment shows how you can take
advantage of short-circuit logical evaluation to be sure that a division operation will be valid
before evaluating it:

if (denom != 0 && num / denom > 10)

72 P a r t I : T h e J a v a L a n g u a g e

Since the short-circuit form of AND (&&) is used, there is no risk of causing a run-time
exception when denom is zero. If this line of code were written using the single & version
of AND, both sides would be evaluated, causing a run-time exception when denom is zero.

It is standard practice to use the short-circuit forms of AND and OR in cases involving
Boolean logic, leaving the single-character versions exclusively for bitwise operations. However,
there are exceptions to this rule. For example, consider the following statement:

if(c==1 & e++ < 100) d = 100;

Here, using a single & ensures that the increment operation will be applied to e whether c
is equal to 1 or not.

The Assignment Operator
You have been using the assignment operator since Chapter 2. Now it is time to take a formal
look at it. The assignment operator is the single equal sign, =. The assignment operator works in
Java much as it does in any other computer language. It has this general form:

var = expression;

Here, the type of var must be compatible with the type of expression.
The assignment operator does have one interesting attribute that you may not be familiar

with: it allows you to create a chain of assignments. For example, consider this fragment:

int x, y, z;

x = y = z = 100; // set x, y, and z to 100

This fragment sets the variables x, y, and z to 100 using a single statement. This works
because the = is an operator that yields the value of the right-hand expression. Thus, the
value of z = 100 is 100, which is then assigned to y, which in turn is assigned to x. Using a
“chain of assignment” is an easy way to set a group of variables to a common value.

The ? Operator
Java includes a special ternary (three-way) operator that can replace certain types of if-then-else
statements. This operator is the ?. It can seem somewhat confusing at first, but the ? can be
used very effectively once mastered. The ? has this general form:

expression1 ? expression2 : expression3

Here, expression1 can be any expression that evaluates to a boolean value. If expression1 is
true, then expression2 is evaluated; otherwise, expression3 is evaluated. The result of the ?
operation is that of the expression evaluated. Both expression2 and expression3 are required
to return the same type, which can’t be void.

Here is an example of the way that the ? is employed:

ratio = denom == 0 ? 0 : num / denom;

C h a p t e r 4 : O p e r a t o r s 73

74 P a r t I : T h e J a v a L a n g u a g e

When Java evaluates this assignment expression, it first looks at the expression to the left of
the question mark. If denom equals zero, then the expression between the question mark and
the colon is evaluated and used as the value of the entire ? expression. If denom does not
equal zero, then the expression after the colon is evaluated and used for the value of the
entire ? expression. The result produced by the ? operator is then assigned to ratio.

Here is a program that demonstrates the ? operator. It uses it to obtain the absolute
value of a variable.

// Demonstrate ?.
class Ternary {
public static void main(String args[]) {
int i, k;

i = 10;
k = i < 0 ? -i : i; // get absolute value of i
System.out.print("Absolute value of ");
System.out.println(i + " is " + k);

i = -10;
k = i < 0 ? -i : i; // get absolute value of i
System.out.print("Absolute value of ");
System.out.println(i + " is " + k);

}
}

The output generated by the program is shown here:

Absolute value of 10 is 10
Absolute value of -10 is 10

Operator Precedence
Table 4-1 shows the order of precedence for Java operators, from highest to lowest. Notice
that the first row shows items that you may not normally think of as operators: parentheses,
square brackets, and the dot operator. Technically, these are called separators, but they act
like operators in an expression. Parentheses are used to alter the precedence of an operation.
As you know from the previous chapter, the square brackets provide array indexing. The dot
operator is used to dereference objects and will be discussed later in this book.

Using Parentheses
Parentheses raise the precedence of the operations that are inside them. This is often necessary
to obtain the result you desire. For example, consider the following expression:

a >> b + 3

This expression first adds 3 to b and then shifts a right by that result. That is, this expression
can be rewritten using redundant parentheses like this:

a >> (b + 3)

C h a p t e r 4 : O p e r a t o r s 75

However, if you want to first shift a right by b positions and then add 3 to that result,
you will need to parenthesize the expression like this:

(a >> b) + 3

In addition to altering the normal precedence of an operator, parentheses can sometimes
be used to help clarify the meaning of an expression. For anyone reading your code, a
complicated expression can be difficult to understand. Adding redundant but clarifying
parentheses to complex expressions can help prevent confusion later. For example, which of
the following expressions is easier to read?

a | 4 + c >> b & 7
(a | (((4 + c) >> b) & 7))

One other point: parentheses (redundant or not) do not degrade the performance of
your program. Therefore, adding parentheses to reduce ambiguity does not negatively
affect your program.

Highest

() [] .

++ – – ~ !

* / %

+ –

>> >>> <<

> >= < <=

== !=

&

^

|

&&

||

?:

= op=

Lowest

TABLE 4-1
The Precedence of
the Java Operators

This page intentionally left blank

5
Control Statements

Aprogramming language uses control statements to cause the flow of execution to
advance and branch based on changes to the state of a program. Java’s program
control statements can be put into the following categories: selection, iteration, and

jump. Selection statements allow your program to choose different paths of execution based
upon the outcome of an expression or the state of a variable. Iteration statements enable
program execution to repeat one or more statements (that is, iteration statements form
loops). Jump statements allow your program to execute in a nonlinear fashion. All of Java’s
control statements are examined here.

Java’s Selection Statements
Java supports two selection statements: if and switch. These statements allow you to control the
flow of your program’s execution based upon conditions known only during run time. You will
be pleasantly surprised by the power and flexibility contained in these two statements.

if
The if statement was introduced in Chapter 2. It is examined in detail here. The if statement
is Java’s conditional branch statement. It can be used to route program execution through
two different paths. Here is the general form of the if statement:

if (condition) statement1;
else statement2;

Here, each statement may be a single statement or a compound statement enclosed in curly
braces (that is, a block). The condition is any expression that returns a boolean value. The else
clause is optional.

The if works like this: If the condition is true, then statement1 is executed. Otherwise,
statement2 (if it exists) is executed. In no case will both statements be executed. For example,
consider the following:

int a, b;
// ...
if(a < b) a = 0;
else b = 0;

7 7

78 P a r t I : T h e J a v a L a n g u a g e

Here, if a is less than b, then a is set to zero. Otherwise, b is set to zero. In no case are they
both set to zero.

Most often, the expression used to control the if will involve the relational operators.
However, this is not technically necessary. It is possible to control the if using a single
boolean variable, as shown in this code fragment:

boolean dataAvailable;
// ...
if (dataAvailable)
ProcessData();

else
waitForMoreData();

Remember, only one statement can appear directly after the if or the else. If you want
to include more statements, you’ll need to create a block, as in this fragment:

int bytesAvailable;
// ...
if (bytesAvailable > 0) {
ProcessData();
bytesAvailable -= n;

} else
waitForMoreData();

Here, both statements within the if block will execute if bytesAvailable is greater than zero.
Some programmers find it convenient to include the curly braces when using the if,

even when there is only one statement in each clause. This makes it easy to add another
statement at a later date, and you don’t have to worry about forgetting the braces. In fact,
forgetting to define a block when one is needed is a common cause of errors. For example,
consider the following code fragment:

int bytesAvailable;
// ...
if (bytesAvailable > 0) {
ProcessData();
bytesAvailable -= n;

} else
waitForMoreData();
bytesAvailable = n;

It seems clear that the statement bytesAvailable = n; was intended to be executed inside
the else clause, because of the indentation level. However, as you recall, whitespace is
insignificant to Java, and there is no way for the compiler to know what was intended. This
code will compile without complaint, but it will behave incorrectly when run. The preceding
example is fixed in the code that follows:

int bytesAvailable;
// ...

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 79

if (bytesAvailable > 0) {
ProcessData();
bytesAvailable -= n;

} else {
waitForMoreData();
bytesAvailable = n;

}

Nested ifs
A nested if is an if statement that is the target of another if or else. Nested ifs are very common
in programming. When you nest ifs, the main thing to remember is that an else statement
always refers to the nearest if statement that is within the same block as the else and that is
not already associated with an else. Here is an example:

if(i == 10) {
if(j < 20) a = b;
if(k > 100) c = d; // this if is
else a = c; // associated with this else

}
else a = d; // this else refers to if(i == 10)

As the comments indicate, the final else is not associated with if(j<20) because it is not
in the same block (even though it is the nearest if without an else). Rather, the final else
is associated with if(i==10). The inner else refers to if(k>100) because it is the closest if
within the same block.

The if-else-if Ladder
A common programming construct that is based upon a sequence of nested ifs is the
if-else-if ladder. It looks like this:

if(condition)
statement;

else if(condition)
statement;

else if(condition)
statement;

.

.

.
else

statement;

The if statements are executed from the top down. As soon as one of the conditions controlling
the if is true, the statement associated with that if is executed, and the rest of the ladder is
bypassed. If none of the conditions is true, then the final else statement will be executed.
The final else acts as a default condition; that is, if all other conditional tests fail, then the

80 P a r t I : T h e J a v a L a n g u a g e

last else statement is performed. If there is no final else and all other conditions are false,
then no action will take place.

Here is a program that uses an if-else-if ladder to determine which season a particular
month is in.

// Demonstrate if-else-if statements.
class IfElse {
public static void main(String args[]) {
int month = 4; // April
String season;

if(month == 12 || month == 1 || month == 2)
season = "Winter";

else if(month == 3 || month == 4 || month == 5)
season = "Spring";

else if(month == 6 || month == 7 || month == 8)
season = "Summer";

else if(month == 9 || month == 10 || month == 11)
season = "Autumn";

else
season = "Bogus Month";

System.out.println("April is in the " + season + ".");
}

}

Here is the output produced by the program:

April is in the Spring.

You might want to experiment with this program before moving on. As you will find,
no matter what value you give month, one and only one assignment statement within the
ladder will be executed.

switch
The switch statement is Java’s multiway branch statement. It provides an easy way to dispatch
execution to different parts of your code based on the value of an expression. As such, it often
provides a better alternative than a large series of if-else-if statements. Here is the general form
of a switch statement:

switch (expression) {
case value1:

// statement sequence
break;

case value2:
// statement sequence
break;

.

.

.
case valueN:

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 81

// statement sequence
break;

default:
// default statement sequence

}

The expression must be of type byte, short, int, or char; each of the values specified in the
case statements must be of a type compatible with the expression. (An enumeration value can
also be used to control a switch statement. Enumerations are described in Chapter 12.) Each
case value must be a unique literal (that is, it must be a constant, not a variable). Duplicate case
values are not allowed.

The switch statement works like this: The value of the expression is compared with each
of the literal values in the case statements. If a match is found, the code sequence following
that case statement is executed. If none of the constants matches the value of the expression,
then the default statement is executed. However, the default statement is optional. If no case
matches and no default is present, then no further action is taken.

The break statement is used inside the switch to terminate a statement sequence. When
a break statement is encountered, execution branches to the first line of code that follows the
entire switch statement. This has the effect of “jumping out” of the switch.

Here is a simple example that uses a switch statement:

// A simple example of the switch.
class SampleSwitch {
public static void main(String args[]) {
for(int i=0; i<6; i++)
switch(i) {
case 0:
System.out.println("i is zero.");
break;

case 1:
System.out.println("i is one.");
break;

case 2:
System.out.println("i is two.");
break;

case 3:
System.out.println("i is three.");
break;

default:
System.out.println("i is greater than 3.");

}
}

}

The output produced by this program is shown here:

i is zero.
i is one.
i is two.
i is three.
i is greater than 3.
i is greater than 3.

82 P a r t I : T h e J a v a L a n g u a g e

As you can see, each time through the loop, the statements associated with the case constant
that matches i are executed. All others are bypassed. After i is greater than 3, no case statements
match, so the default statement is executed.

The break statement is optional. If you omit the break, execution will continue on into the
next case. It is sometimes desirable to have multiple cases without break statements between
them. For example, consider the following program:

// In a switch, break statements are optional.
class MissingBreak {
public static void main(String args[]) {
for(int i=0; i<12; i++)
switch(i) {
case 0:
case 1:
case 2:
case 3:
case 4:
System.out.println("i is less than 5");
break;

case 5:
case 6:
case 7:
case 8:
case 9:
System.out.println("i is less than 10");
break;

default:
System.out.println("i is 10 or more");

}
}

}

This program generates the following output:

i is less than 5
i is less than 5
i is less than 5
i is less than 5
i is less than 5
i is less than 10
i is less than 10
i is less than 10
i is less than 10
i is less than 10
i is 10 or more
i is 10 or more

As you can see, execution falls through each case until a break statement (or the end of the
switch) is reached.

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 83

While the preceding example is, of course, contrived for the sake of illustration, omitting the
break statement has many practical applications in real programs. To sample its more realistic
usage, consider the following rewrite of the season example shown earlier. This version uses a
switch to provide a more efficient implementation.

// An improved version of the season program.
class Switch {

public static void main(String args[]) {
int month = 4;
String season;
switch (month) {
case 12:
case 1:
case 2:
season = "Winter";
break;

case 3:
case 4:
case 5:
season = "Spring";
break;

case 6:
case 7:
case 8:
season = "Summer";
break;

case 9:
case 10:
case 11:
season = "Autumn";
break;

default:
season = "Bogus Month";

}
System.out.println("April is in the " + season + ".");

}
}

Nested switch Statements
You can use a switch as part of the statement sequence of an outer switch. This is called a
nested switch. Since a switch statement defines its own block, no conflicts arise between the
case constants in the inner switch and those in the outer switch. For example, the following
fragment is perfectly valid:

switch(count) {
case 1:
switch(target) { // nested switch
case 0:
System.out.println("target is zero");
break;

case 1: // no conflicts with outer switch
System.out.println("target is one");
break;

}
break;

case 2: // ...

Here, the case 1: statement in the inner switch does not conflict with the case 1: statement in
the outer switch. The count variable is only compared with the list of cases at the outer level.
If count is 1, then target is compared with the inner list cases.

In summary, there are three important features of the switch statement to note:

• The switch differs from the if in that switch can only test for equality, whereas if
can evaluate any type of Boolean expression. That is, the switch looks only for a
match between the value of the expression and one of its case constants.

• No two case constants in the same switch can have identical values. Of course, a
switch statement and an enclosing outer switch can have case constants in common.

• A switch statement is usually more efficient than a set of nested ifs.

The last point is particularly interesting because it gives insight into how the Java compiler
works. When it compiles a switch statement, the Java compiler will inspect each of the case
constants and create a “jump table” that it will use for selecting the path of execution depending
on the value of the expression. Therefore, if you need to select among a large group of values,
a switch statement will run much faster than the equivalent logic coded using a sequence of
if-elses. The compiler can do this because it knows that the case constants are all the same type
and simply must be compared for equality with the switch expression. The compiler has no
such knowledge of a long list of if expressions.

Iteration Statements
Java’s iteration statements are for, while, and do-while. These statements create what we
commonly call loops. As you probably know, a loop repeatedly executes the same set of
instructions until a termination condition is met. As you will see, Java has a loop to fit any
programming need.

while
The while loop is Java’s most fundamental loop statement. It repeats a statement or block
while its controlling expression is true. Here is its general form:

while(condition) {
// body of loop

}

The condition can be any Boolean expression. The body of the loop will be executed as long
as the conditional expression is true. When condition becomes false, control passes to the
next line of code immediately following the loop. The curly braces are unnecessary if only
a single statement is being repeated.

84 P a r t I : T h e J a v a L a n g u a g e

Here is a while loop that counts down from 10, printing exactly ten lines of “tick”:

// Demonstrate the while loop.
class While {
public static void main(String args[]) {
int n = 10;

while(n > 0) {
System.out.println("tick " + n);
n--;

}
}

}

When you run this program, it will “tick” ten times:

tick 10
tick 9
tick 8
tick 7
tick 6
tick 5
tick 4
tick 3
tick 2
tick 1

Since the while loop evaluates its conditional expression at the top of the loop, the body
of the loop will not execute even once if the condition is false to begin with. For example, in
the following fragment, the call to println() is never executed:

int a = 10, b = 20;

while(a > b)
System.out.println("This will not be displayed");

The body of the while (or any other of Java’s loops) can be empty. This is because a null
statement (one that consists only of a semicolon) is syntactically valid in Java. For example,
consider the following program:

// The target of a loop can be empty.
class NoBody {
public static void main(String args[]) {
int i, j;

i = 100;
j = 200;

// find midpoint between i and j
while(++i < --j) ; // no body in this loop

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 85

86 P a r t I : T h e J a v a L a n g u a g e

System.out.println("Midpoint is " + i);
}

}

This program finds the midpoint between i and j. It generates the following output:

Midpoint is 150

Here is how this while loop works. The value of i is incremented, and the value of j is
decremented. These values are then compared with one another. If the new value of i is still
less than the new value of j, then the loop repeats. If i is equal to or greater than j, the loop
stops. Upon exit from the loop, i will hold a value that is midway between the original values
of i and j. (Of course, this procedure only works when i is less than j to begin with.) As you
can see, there is no need for a loop body; all of the action occurs within the conditional
expression, itself. In professionally written Java code, short loops are frequently coded
without bodies when the controlling expression can handle all of the details itself.

do-while
As you just saw, if the conditional expression controlling a while loop is initially false,
then the body of the loop will not be executed at all. However, sometimes it is desirable
to execute the body of a loop at least once, even if the conditional expression is false to
begin with. In other words, there are times when you would like to test the termination
expression at the end of the loop rather than at the beginning. Fortunately, Java supplies a
loop that does just that: the do-while. The do-while loop always executes its body at least
once, because its conditional expression is at the bottom of the loop. Its general form is

do {
// body of loop

} while (condition);

Each iteration of the do-while loop first executes the body of the loop and then evaluates
the conditional expression. If this expression is true, the loop will repeat. Otherwise, the loop
terminates. As with all of Java’s loops, condition must be a Boolean expression.

Here is a reworked version of the “tick” program that demonstrates the do-while loop.
It generates the same output as before.

// Demonstrate the do-while loop.
class DoWhile {
public static void main(String args[]) {
int n = 10;

do {
System.out.println("tick " + n);
n--;

} while(n > 0);
}

}

The loop in the preceding program, while technically correct, can be written more
efficiently as follows:

do {
System.out.println("tick " + n);

} while(--n > 0);

In this example, the expression (– –n > 0) combines the decrement of n and the test for zero
into one expression. Here is how it works. First, the – –n statement executes, decrementing
n and returning the new value of n. This value is then compared with zero. If it is greater
than zero, the loop continues; otherwise it terminates.

The do-while loop is especially useful when you process a menu selection, because you
will usually want the body of a menu loop to execute at least once. Consider the following
program, which implements a very simple help system for Java’s selection and iteration
statements:

// Using a do-while to process a menu selection
class Menu {
public static void main(String args[])
throws java.io.IOException {
char choice;

do {
System.out.println("Help on:");
System.out.println(" 1. if");
System.out.println(" 2. switch");
System.out.println(" 3. while");
System.out.println(" 4. do-while");
System.out.println(" 5. for\n");
System.out.println("Choose one:");
choice = (char) System.in.read();

} while(choice < '1' || choice > '5');

System.out.println("\n");

switch(choice) {
case '1':
System.out.println("The if:\n");
System.out.println("if(condition) statement;");
System.out.println("else statement;");
break;

case '2':
System.out.println("The switch:\n");
System.out.println("switch(expression) {");
System.out.println(" case constant:");
System.out.println(" statement sequence");
System.out.println(" break;");
System.out.println(" // ...");
System.out.println("}");
break;

case '3':
System.out.println("The while:\n");
System.out.println("while(condition) statement;");
break;

case '4':

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 87

System.out.println("The do-while:\n");
System.out.println("do {");
System.out.println(" statement;");
System.out.println("} while (condition);");
break;

case '5':
System.out.println("The for:\n");
System.out.print("for(init; condition; iteration)");
System.out.println(" statement;");
break;

}
}

}

Here is a sample run produced by this program:

Help on:
1. if
2. switch
3. while
4. do-while
5. for

Choose one:
4
The do-while:
do {
statement;

} while (condition);

In the program, the do-while loop is used to verify that the user has entered a valid choice.
If not, then the user is reprompted. Since the menu must be displayed at least once, the do-
while is the perfect loop to accomplish this.

A few other points about this example: Notice that characters are read from the keyboard
by calling System.in.read(). This is one of Java’s console input functions. Although Java’s
console I/O methods won’t be discussed in detail until Chapter 13, System.in.read() is used
here to obtain the user’s choice. It reads characters from standard input (returned as integers,
which is why the return value was cast to char). By default, standard input is line buffered, so
you must press ENTER before any characters that you type will be sent to your program.

Java’s console input can be a bit awkward to work with. Further, most real-world Java
programs will be graphical and window-based. For these reasons, not much use of console
input has been made in this book. However, it is useful in this context. One other point to
consider: Because System.in.read() is being used, the program must specify the throws
java.io.IOException clause. This line is necessary to handle input errors. It is part of Java’s
exception handling features, which are discussed in Chapter 10.

for
You were introduced to a simple form of the for loop in Chapter 2. As you will see, it is a
powerful and versatile construct.

88 P a r t I : T h e J a v a L a n g u a g e

Beginning with JDK 5, there are two forms of the for loop. The first is the traditional form
that has been in use since the original version of Java. The second is the new “for-each” form.
Both types of for loops are discussed here, beginning with the traditional form.

Here is the general form of the traditional for statement:

for(initialization; condition; iteration) {
// body

}

If only one statement is being repeated, there is no need for the curly braces.
The for loop operates as follows. When the loop first starts, the initialization portion of

the loop is executed. Generally, this is an expression that sets the value of the loop control
variable, which acts as a counter that controls the loop. It is important to understand that
the initialization expression is only executed once. Next, condition is evaluated. This must be
a Boolean expression. It usually tests the loop control variable against a target value. If this
expression is true, then the body of the loop is executed. If it is false, the loop terminates.
Next, the iteration portion of the loop is executed. This is usually an expression that increments
or decrements the loop control variable. The loop then iterates, first evaluating the conditional
expression, then executing the body of the loop, and then executing the iteration expression
with each pass. This process repeats until the controlling expression is false.

Here is a version of the “tick” program that uses a for loop:

// Demonstrate the for loop.
class ForTick {
public static void main(String args[]) {
int n;

for(n=10; n>0; n--)
System.out.println("tick " + n);

}
}

Declaring Loop Control Variables Inside the for Loop
Often the variable that controls a for loop is only needed for the purposes of the loop and
is not used elsewhere. When this is the case, it is possible to declare the variable inside the
initialization portion of the for. For example, here is the preceding program recoded so that
the loop control variable n is declared as an int inside the for:

// Declare a loop control variable inside the for.
class ForTick {
public static void main(String args[]) {

// here, n is declared inside of the for loop
for(int n=10; n>0; n--)
System.out.println("tick " + n);

}
}

When you declare a variable inside a for loop, there is one important point to remember:
the scope of that variable ends when the for statement does. (That is, the scope of the variable
is limited to the for loop.) Outside the for loop, the variable will cease to exist. If you need

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 89

to use the loop control variable elsewhere in your program, you will not be able to declare
it inside the for loop.

When the loop control variable will not be needed elsewhere, most Java programmers
declare it inside the for. For example, here is a simple program that tests for prime numbers.
Notice that the loop control variable, i, is declared inside the for since it is not needed elsewhere.

// Test for primes.
class FindPrime {
public static void main(String args[]) {
int num;
boolean isPrime = true;

num = 14;
for(int i=2; i <= num/i; i++) {
if((num % i) == 0) {
isPrime = false;
break;

}
}
if(isPrime) System.out.println("Prime");
else System.out.println("Not Prime");

}
}

Using the Comma
There will be times when you will want to include more than one statement in the initialization
and iteration portions of the for loop. For example, consider the loop in the following program:

class Sample {
public static void main(String args[]) {
int a, b;

b = 4;
for(a=1; a<b; a++) {
System.out.println("a = " + a);
System.out.println("b = " + b);
b--;

}
}

}

As you can see, the loop is controlled by the interaction of two variables. Since the loop is
governed by two variables, it would be useful if both could be included in the for statement,
itself, instead of b being handled manually. Fortunately, Java provides a way to accomplish
this. To allow two or more variables to control a for loop, Java permits you to include multiple
statements in both the initialization and iteration portions of the for. Each statement is separated
from the next by a comma.

Using the comma, the preceding for loop can be more efficiently coded as shown here:

// Using the comma.
class Comma {

90 P a r t I : T h e J a v a L a n g u a g e

public static void main(String args[]) {
int a, b;

for(a=1, b=4; a<b; a++, b--) {
System.out.println("a = " + a);
System.out.println("b = " + b);

}
}

}

In this example, the initialization portion sets the values of both a and b. The two comma-
separated statements in the iteration portion are executed each time the loop repeats. The
program generates the following output:

a = 1
b = 4
a = 2
b = 3

NOTEOTE If you are familiar with C/C++, then you know that in those languages the comma is an
operator that can be used in any valid expression. However, this is not the case with Java. In
Java, the comma is a separator.

Some for Loop Variations
The for loop supports a number of variations that increase its power and applicability. The
reason it is so flexible is that its three parts—the initialization, the conditional test, and the
iteration—do not need to be used for only those purposes. In fact, the three sections of the
for can be used for any purpose you desire. Let’s look at some examples.

One of the most common variations involves the conditional expression. Specifically,
this expression does not need to test the loop control variable against some target value. In
fact, the condition controlling the for can be any Boolean expression. For example, consider
the following fragment:

boolean done = false;

for(int i=1; !done; i++) {
// ...
if(interrupted()) done = true;

}

In this example, the for loop continues to run until the boolean variable done is set to true.
It does not test the value of i.

Here is another interesting for loop variation. Either the initialization or the iteration
expression or both may be absent, as in this next program:

// Parts of the for loop can be empty.
class ForVar {
public static void main(String args[]) {
int i;

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 91

boolean done = false;

i = 0;
for(; !done;) {
System.out.println("i is " + i);
if(i == 10) done = true;
i++;

}
}

}

Here, the initialization and iteration expressions have been moved out of the for. Thus, parts
of the for are empty. While this is of no value in this simple example—indeed, it would be
considered quite poor style—there can be times when this type of approach makes sense.
For example, if the initial condition is set through a complex expression elsewhere in the
program or if the loop control variable changes in a nonsequential manner determined by
actions that occur within the body of the loop, it may be appropriate to leave these parts of
the for empty.

Here is one more for loop variation. You can intentionally create an infinite loop (a loop
that never terminates) if you leave all three parts of the for empty. For example:

for(; ;) {
// ...

}

This loop will run forever because there is no condition under which it will terminate.
Although there are some programs, such as operating system command processors, that
require an infinite loop, most “infinite loops” are really just loops with special termination
requirements. As you will soon see, there is a way to terminate a loop— even an infinite
loop like the one shown—that does not make use of the normal loop conditional expression.

The For-Each Version of the for Loop
Beginning with JDK 5, a second form of for was defined that implements a “for-each” style
loop. As you may know, contemporary language theory has embraced the for-each concept,
and it is quickly becoming a standard feature that programmers have come to expect. A for-
each style loop is designed to cycle through a collection of objects, such as an array, in strictly
sequential fashion, from start to finish. Unlike some languages, such as C#, that implement
a for-each loop by using the keyword foreach, Java adds the for-each capability by enhancing
the for statement. The advantage of this approach is that no new keyword is required, and no
preexisting code is broken. The for-each style of for is also referred to as the enhanced for loop.

The general form of the for-each version of the for is shown here:

for(type itr-var : collection) statement-block

Here, type specifies the type and itr-var specifies the name of an iteration variable that will
receive the elements from a collection, one at a time, from beginning to end. The collection
being cycled through is specified by collection. There are various types of collections that
can be used with the for, but the only type used in this chapter is the array. (Other types of
collections that can be used with the for, such as those defined by the Collections Framework,

92 P a r t I : T h e J a v a L a n g u a g e

are discussed later in this book.) With each iteration of the loop, the next element in the
collection is retrieved and stored in itr-var. The loop repeats until all elements in the collection
have been obtained.

Because the iteration variable receives values from the collection, type must be the same
as (or compatible with) the elements stored in the collection. Thus, when iterating over arrays,
type must be compatible with the base type of the array.

To understand the motivation behind a for-each style loop, consider the type of for loop
that it is designed to replace. The following fragment uses a traditional for loop to compute
the sum of the values in an array:

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = 0;

for(int i=0; i < 10; i++) sum += nums[i];

To compute the sum, each element in nums is read, in order, from start to finish. Thus,
the entire array is read in strictly sequential order. This is accomplished by manually
indexing the nums array by i, the loop control variable.

The for-each style for automates the preceding loop. Specifically, it eliminates the need
to establish a loop counter, specify a starting and ending value, and manually index the
array. Instead, it automatically cycles through the entire array, obtaining one element at
a time, in sequence, from beginning to end. For example, here is the preceding fragment
rewritten using a for-each version of the for:

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = 0;

for(int x: nums) sum += x;

With each pass through the loop, x is automatically given a value equal to the next element
in nums. Thus, on the first iteration, x contains 1; on the second iteration, x contains 2; and so on.
Not only is the syntax streamlined, but it also prevents boundary errors.

Here is an entire program that demonstrates the for-each version of the for just described:

// Use a for-each style for loop.
class ForEach {
public static void main(String args[]) {
int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = 0;

// use for-each style for to display and sum the values
for(int x : nums) {
System.out.println("Value is: " + x);
sum += x;

}

System.out.println("Summation: " + sum);
}

}

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 93

The output from the program is shown here.

Value is: 1
Value is: 2
Value is: 3
Value is: 4
Value is: 5
Value is: 6
Value is: 7
Value is: 8
Value is: 9
Value is: 10
Summation: 55

As this output shows, the for-each style for automatically cycles through an array in sequence
from the lowest index to the highest.

Although the for-each for loop iterates until all elements in an array have been examined,
it is possible to terminate the loop early by using a break statement. For example, this program
sums only the first five elements of nums:

// Use break with a for-each style for.
class ForEach2 {
public static void main(String args[]) {
int sum = 0;
int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

// use for to display and sum the values
for(int x : nums) {
System.out.println("Value is: " + x);
sum += x;
if(x == 5) break; // stop the loop when 5 is obtained

}
System.out.println("Summation of first 5 elements: " + sum);

}
}

This is the output produced:

Value is: 1
Value is: 2
Value is: 3
Value is: 4
Value is: 5
Summation of first 5 elements: 15

As is evident, the for loop stops after the fifth element has been obtained. The break statement
can also be used with Java’s other loops, and it is discussed in detail later in this chapter.

There is one important point to understand about the for-each style loop. Its iteration
variable is “read-only” as it relates to the underlying array. An assignment to the
iteration variable has no effect on the underlying array. In other words, you can’t change

94 P a r t I : T h e J a v a L a n g u a g e

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 95

the contents of the array by assigning the iteration variable a new value. For example,
consider this program:

// The for-each loop is essentially read-only.
class NoChange {
public static void main(String args[]) {
int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

for(int x : nums) {
System.out.print(x + " ");
x = x * 10; // no effect on nums

}

System.out.println();

for(int x : nums)
System.out.print(x + " ");

System.out.println();
}

}

The first for loop increases the value of the iteration variable by a factor of 10. However,
this assignment has no effect on the underlying array nums, as the second for loop illustrates.
The output, shown here, proves this point:

1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10

Iterating Over Multidimensional Arrays
The enhanced version of the for also works on multidimensional arrays. Remember,
however, that in Java, multidimensional arrays consist of arrays of arrays. (For example,
a two-dimensional array is an array of one-dimensional arrays.) This is important when
iterating over a multidimensional array, because each iteration obtains the next array, not an
individual element. Furthermore, the iteration variable in the for loop must be compatible
with the type of array being obtained. For example, in the case of a two-dimensional array,
the iteration variable must be a reference to a one-dimensional array. In general, when
using the for-each for to iterate over an array of N dimensions, the objects obtained will be
arrays of N–1 dimensions. To understand the implications of this, consider the following
program. It uses nested for loops to obtain the elements of a two-dimensional array in row-
order, from first to last.

// Use for-each style for on a two-dimensional array.
class ForEach3 {
public static void main(String args[]) {
int sum = 0;
int nums[][] = new int[3][5];

// give nums some values
for(int i = 0; i < 3; i++)

for(int j=0; j < 5; j++)
nums[i][j] = (i+1)*(j+1);

// use for-each for to display and sum the values
for(int x[] : nums) {
for(int y : x) {
System.out.println("Value is: " + y);
sum += y;

}
}
System.out.println("Summation: " + sum);

}
}

The output from this program is shown here:

Value is: 1
Value is: 2
Value is: 3
Value is: 4
Value is: 5
Value is: 2
Value is: 4
Value is: 6
Value is: 8
Value is: 10
Value is: 3
Value is: 6
Value is: 9
Value is: 12
Value is: 15
Summation: 90

In the program, pay special attention to this line:

for(int x[] : nums) {

Notice how x is declared. It is a reference to a one-dimensional array of integers. This is
necessary because each iteration of the for obtains the next array in nums, beginning with
the array specified by nums[0]. The inner for loop then cycles through each of these arrays,
displaying the values of each element.

Applying the Enhanced for
Since the for-each style for can only cycle through an array sequentially, from start to finish,
you might think that its use is limited, but this is not true. A large number of algorithms
require exactly this mechanism. One of the most common is searching. For example, the
following program uses a for loop to search an unsorted array for a value. It stops if the
value is found.

96 P a r t I : T h e J a v a L a n g u a g e

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 97

// Search an array using for-each style for.
class Search {
public static void main(String args[]) {
int nums[] = { 6, 8, 3, 7, 5, 6, 1, 4 };
int val = 5;
boolean found = false;

// use for-each style for to search nums for val
for(int x : nums) {
if(x == val) {
found = true;
break;

}
}

if(found)
System.out.println("Value found!");

}
}

The for-each style for is an excellent choice in this application because searching an
unsorted array involves examining each element in sequence. (Of course, if the array were
sorted, a binary search could be used, which would require a different style loop.) Other
types of applications that benefit from for-each style loops include computing an average,
finding the minimum or maximum of a set, looking for duplicates, and so on.

Although we have been using arrays in the examples in this chapter, the for-each style
for is especially useful when operating on collections defined by the Collections Framework,
which is described in Part II. More generally, the for can cycle through the elements of any
collection of objects, as long as that collection satisfies a certain set of constraints, which are
described in Chapter 17.

Nested Loops
Like all other programming languages, Java allows loops to be nested. That is, one loop may
be inside another. For example, here is a program that nests for loops:

// Loops may be nested.
class Nested {
public static void main(String args[]) {
int i, j;

for(i=0; i<10; i++) {
for(j=i; j<10; j++)
System.out.print(".");

System.out.println();
}

}
}

The output produced by this program is shown here:

..........

.........

........

.......

......

.....

....

...

..

.

Jump Statements
Java supports three jump statements: break, continue, and return. These statements transfer
control to another part of your program. Each is examined here.

NOTEOTE In addition to the jump statements discussed here, Java supports one other way that you
can change your program’s flow of execution: through exception handling. Exception handling
provides a structured method by which run-time errors can be trapped and handled by your
program. It is supported by the keywords try, catch, throw, throws, and finally. In essence,
the exception handling mechanism allows your program to perform a nonlocal branch. Since
exception handling is a large topic, it is discussed in its own chapter, Chapter 10.

Using break
In Java, the break statement has three uses. First, as you have seen, it terminates a statement
sequence in a switch statement. Second, it can be used to exit a loop. Third, it can be used as
a “civilized” form of goto. The last two uses are explained here.

Using break to Exit a Loop
By using break, you can force immediate termination of a loop, bypassing the conditional
expression and any remaining code in the body of the loop. When a break statement is
encountered inside a loop, the loop is terminated and program control resumes at the next
statement following the loop. Here is a simple example:

// Using break to exit a loop.
class BreakLoop {
public static void main(String args[]) {
for(int i=0; i<100; i++) {
if(i == 10) break; // terminate loop if i is 10
System.out.println("i: " + i);

}
System.out.println("Loop complete.");

}
}

98 P a r t I : T h e J a v a L a n g u a g e

This program generates the following output:

i: 0
i: 1
i: 2
i: 3
i: 4
i: 5
i: 6
i: 7
i: 8
i: 9
Loop complete.

As you can see, although the for loop is designed to run from 0 to 99, the break statement
causes it to terminate early, when i equals 10.

The break statement can be used with any of Java’s loops, including intentionally
infinite loops. For example, here is the preceding program coded by use of a while loop.
The output from this program is the same as just shown.

// Using break to exit a while loop.
class BreakLoop2 {
public static void main(String args[]) {
int i = 0;

while(i < 100) {
if(i == 10) break; // terminate loop if i is 10
System.out.println("i: " + i);
i++;

}
System.out.println("Loop complete.");

}
}

When used inside a set of nested loops, the break statement will only break out of the
innermost loop. For example:

// Using break with nested loops.
class BreakLoop3 {
public static void main(String args[]) {
for(int i=0; i<3; i++) {
System.out.print("Pass " + i + ": ");
for(int j=0; j<100; j++) {
if(j == 10) break; // terminate loop if j is 10
System.out.print(j + " ");

}
System.out.println();

}
System.out.println("Loops complete.");

}
}

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 99

100 P a r t I : T h e J a v a L a n g u a g e

This program generates the following output:

Pass 0: 0 1 2 3 4 5 6 7 8 9
Pass 1: 0 1 2 3 4 5 6 7 8 9
Pass 2: 0 1 2 3 4 5 6 7 8 9
Loops complete.

As you can see, the break statement in the inner loop only causes termination of that loop.
The outer loop is unaffected.

Here are two other points to remember about break. First, more than one break statement
may appear in a loop. However, be careful. Too many break statements have the tendency
to destructure your code. Second, the break that terminates a switch statement affects only
that switch statement and not any enclosing loops.

REMEMBEREMEMBER break was not designed to provide the normal means by which a loop is terminated.
The loop’s conditional expression serves this purpose. The break statement should be used to
cancel a loop only when some sort of special situation occurs.

Using break as a Form of Goto
In addition to its uses with the switch statement and loops, the break statement can also be
employed by itself to provide a “civilized” form of the goto statement. Java does not have a
goto statement because it provides a way to branch in an arbitrary and unstructured manner.
This usually makes goto-ridden code hard to understand and hard to maintain. It also prohibits
certain compiler optimizations. There are, however, a few places where the goto is a valuable
and legitimate construct for flow control. For example, the goto can be useful when you are
exiting from a deeply nested set of loops. To handle such situations, Java defines an expanded
form of the break statement. By using this form of break, you can, for example, break out of
one or more blocks of code. These blocks need not be part of a loop or a switch. They can be
any block. Further, you can specify precisely where execution will resume, because this form
of break works with a label. As you will see, break gives you the benefits of a goto without its
problems.

The general form of the labeled break statement is shown here:

break label;

Most often, label is the name of a label that identifies a block of code. This can be a stand-alone
block of code but it can also be a block that is the target of another statement. When this form of
break executes, control is transferred out of the named block. The labeled block must enclose
the break statement, but it does not need to be the immediately enclosing block. This means,
for example, that you can use a labeled break statement to exit from a set of nested blocks.
But you cannot use break to transfer control out of a block that does not enclose the break
statement.

To name a block, put a label at the start of it. A label is any valid Java identifier followed
by a colon. Once you have labeled a block, you can then use this label as the target of a
break statement. Doing so causes execution to resume at the end of the labeled block. For
example, the following program shows three nested blocks, each with its own label. The
break statement causes execution to jump forward, past the end of the block labeled second,
skipping the two println() statements.

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 101

// Using break as a civilized form of goto.
class Break {
public static void main(String args[]) {
boolean t = true;

first: {
second: {
third: {
System.out.println("Before the break.");
if(t) break second; // break out of second block
System.out.println("This won't execute");

}
System.out.println("This won't execute");

}
System.out.println("This is after second block.");

}
}

}

Running this program generates the following output:

Before the break.
This is after second block.

One of the most common uses for a labeled break statement is to exit from nested loops.
For example, in the following program, the outer loop executes only once:

// Using break to exit from nested loops
class BreakLoop4 {
public static void main(String args[]) {
outer: for(int i=0; i<3; i++) {
System.out.print("Pass " + i + ": ");
for(int j=0; j<100; j++) {
if(j == 10) break outer; // exit both loops
System.out.print(j + " ");

}
System.out.println("This will not print");

}
System.out.println("Loops complete.");

}
}

This program generates the following output:

Pass 0: 0 1 2 3 4 5 6 7 8 9 Loops complete.

As you can see, when the inner loop breaks to the outer loop, both loops have been terminated.
Notice that this example labels the for statement, which has a block of code as its target.

Keep in mind that you cannot break to any label which is not defined for an enclosing
block. For example, the following program is invalid and will not compile:

// This program contains an error.
class BreakErr {

public static void main(String args[]) {

one: for(int i=0; i<3; i++) {
System.out.print("Pass " + i + ": ");

}

for(int j=0; j<100; j++) {
if(j == 10) break one; // WRONG
System.out.print(j + " ");

}
}

}

Since the loop labeled one does not enclose the break statement, it is not possible to transfer
control out of that block.

Using continue
Sometimes it is useful to force an early iteration of a loop. That is, you might want to continue
running the loop but stop processing the remainder of the code in its body for this particular
iteration. This is, in effect, a goto just past the body of the loop, to the loop’s end. The continue
statement performs such an action. In while and do-while loops, a continue statement
causes control to be transferred directly to the conditional expression that controls the loop.
In a for loop, control goes first to the iteration portion of the for statement and then to the
conditional expression. For all three loops, any intermediate code is bypassed.

Here is an example program that uses continue to cause two numbers to be printed on
each line:

// Demonstrate continue.
class Continue {
public static void main(String args[]) {
for(int i=0; i<10; i++) {
System.out.print(i + " ");
if (i%2 == 0) continue;
System.out.println("");

}
}

}

This code uses the % operator to check if i is even. If it is, the loop continues without printing
a newline. Here is the output from this program:

0 1
2 3
4 5
6 7
8 9

As with the break statement, continue may specify a label to describe which enclosing
loop to continue. Here is an example program that uses continue to print a triangular
multiplication table for 0 through 9.

102 P a r t I : T h e J a v a L a n g u a g e

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 103

// Using continue with a label.
class ContinueLabel {
public static void main(String args[]) {

outer: for (int i=0; i<10; i++) {
for(int j=0; j<10; j++) {
if(j > i) {
System.out.println();
continue outer;

}
System.out.print(" " + (i * j));

}
}
System.out.println();

}
}

The continue statement in this example terminates the loop counting j and continues with
the next iteration of the loop counting i. Here is the output of this program:

0
0 1
0 2 4
0 3 6 9
0 4 8 12 16
0 5 10 15 20 25
0 6 12 18 24 30 36
0 7 14 21 28 35 42 49
0 8 16 24 32 40 48 56 64
0 9 18 27 36 45 54 63 72 81

Good uses of continue are rare. One reason is that Java provides a rich set of loop
statements which fit most applications. However, for those special circumstances in which
early iteration is needed, the continue statement provides a structured way to accomplish it.

return
The last control statement is return. The return statement is used to explicitly return from
a method. That is, it causes program control to transfer back to the caller of the method.
As such, it is categorized as a jump statement. Although a full discussion of return must
wait until methods are discussed in Chapter 6, a brief look at return is presented here.

At any time in a method the return statement can be used to cause execution to branch
back to the caller of the method. Thus, the return statement immediately terminates the
method in which it is executed. The following example illustrates this point. Here, return
causes execution to return to the Java run-time system, since it is the run-time system that
calls main().

// Demonstrate return.
class Return {
public static void main(String args[]) {
boolean t = true;

System.out.println("Before the return.");

if(t) return; // return to caller

System.out.println("This won't execute.");
}

}

The output from this program is shown here:

Before the return.

As you can see, the final println() statement is not executed. As soon as return is executed,
control passes back to the caller.

One last point: In the preceding program, the if(t) statement is necessary. Without it, the
Java compiler would flag an “unreachable code” error because the compiler would know
that the last println() statement would never be executed. To prevent this error, the if statement
is used here to trick the compiler for the sake of this demonstration.

104 P a r t I : T h e J a v a L a n g u a g e

	Part I: The Java Language
	4 Operators
	Arithmetic Operators
	The Bitwise Operators
	Relational Operators
	Boolean Logical Operators
	The Assignment Operator
	The ? Operator
	Operator Precedence
	Using Parentheses

	5 Control Statements
	Java’s Selection Statements
	Iteration Statements
	Jump Statements

