
2
An Overview of Java

As in all other computer languages, the elements of Java do not exist in isolation.
Rather, they work together to form the language as a whole. However, this
interrelatedness can make it difficult to describe one aspect of Java without

involving several others. Often a discussion of one feature implies prior knowledge of
another. For this reason, this chapter presents a quick overview of several key features
of Java. The material described here will give you a foothold that will allow you to write
and understand simple programs. Most of the topics discussed will be examined in greater
detail in the remaining chapters of Part I.

Object-Oriented Programming
Object-oriented programming (OOP) is at the core of Java. In fact, all Java programs are to at
least some extent object-oriented. OOP is so integral to Java that it is best to understand its
basic principles before you begin writing even simple Java programs. Therefore, this chapter
begins with a discussion of the theoretical aspects of OOP.

Two Paradigms
All computer programs consist of two elements: code and data. Furthermore, a program can
be conceptually organized around its code or around its data. That is, some programs are
written around “what is happening” and others are written around “who is being affected.”
These are the two paradigms that govern how a program is constructed. The first way is
called the process-oriented model. This approach characterizes a program as a series of linear
steps (that is, code). The process-oriented model can be thought of as code acting on data.
Procedural languages such as C employ this model to considerable success. However, as
mentioned in Chapter 1, problems with this approach appear as programs grow larger and
more complex.

To manage increasing complexity, the second approach, called object-oriented programming,
was conceived. Object-oriented programming organizes a program around its data (that is,
objects) and a set of well-defined interfaces to that data. An object-oriented program can be
characterized as data controlling access to code. As you will see, by switching the controlling
entity to data, you can achieve several organizational benefits.

1 5

Abstraction
An essential element of object-oriented programming is abstraction. Humans manage
complexity through abstraction. For example, people do not think of a car as a set of tens
of thousands of individual parts. They think of it as a well-defined object with its own
unique behavior. This abstraction allows people to use a car to drive to the grocery store
without being overwhelmed by the complexity of the parts that form the car. They can
ignore the details of how the engine, transmission, and braking systems work. Instead,
they are free to utilize the object as a whole.

A powerful way to manage abstraction is through the use of hierarchical classifications.
This allows you to layer the semantics of complex systems, breaking them into more
manageable pieces. From the outside, the car is a single object. Once inside, you see that
the car consists of several subsystems: steering, brakes, sound system, seat belts, heating,
cellular phone, and so on. In turn, each of these subsystems is made up of more specialized
units. For instance, the sound system consists of a radio, a CD player, and/or a tape player.
The point is that you manage the complexity of the car (or any other complex system)
through the use of hierarchical abstractions.

Hierarchical abstractions of complex systems can also be applied to computer programs.
The data from a traditional process-oriented program can be transformed by abstraction
into its component objects. A sequence of process steps can become a collection of messages
between these objects. Thus, each of these objects describes its own unique behavior. You
can treat these objects as concrete entities that respond to messages telling them to do something.
This is the essence of object-oriented programming.

Object-oriented concepts form the heart of Java just as they form the basis for human
understanding. It is important that you understand how these concepts translate into
programs. As you will see, object-oriented programming is a powerful and natural paradigm
for creating programs that survive the inevitable changes accompanying the life cycle of any
major software project, including conception, growth, and aging. For example, once you
have well-defined objects and clean, reliable interfaces to those objects, you can gracefully
decommission or replace parts of an older system without fear.

The Three OOP Principles
All object-oriented programming languages provide mechanisms that help you implement
the object-oriented model. They are encapsulation, inheritance, and polymorphism. Let’s take
a look at these concepts now.

Encapsulation
Encapsulation is the mechanism that binds together code and the data it manipulates, and
keeps both safe from outside interference and misuse. One way to think about encapsulation
is as a protective wrapper that prevents the code and data from being arbitrarily accessed
by other code defined outside the wrapper. Access to the code and data inside the wrapper
is tightly controlled through a well-defined interface. To relate this to the real world, consider
the automatic transmission on an automobile. It encapsulates hundreds of bits of information
about your engine, such as how much you are accelerating, the pitch of the surface you are
on, and the position of the shift lever. You, as the user, have only one method of affecting

16 P a r t I : T h e J a v a L a n g u a g e

C h a p t e r 2 : A n O v e r v i e w o f J a v a 17

this complex encapsulation: by moving the gear-shift lever. You can’t affect the transmission
by using the turn signal or windshield wipers, for example. Thus, the gear-shift lever is a
well-defined (indeed, unique) interface to the transmission. Further, what occurs inside the
transmission does not affect objects outside the transmission. For example, shifting gears
does not turn on the headlights! Because an automatic transmission is encapsulated, dozens
of car manufacturers can implement one in any way they please. However, from the driver’s
point of view, they all work the same. This same idea can be applied to programming.
The power of encapsulated code is that everyone knows how to access it and thus can use
it regardless of the implementation details—and without fear of unexpected side effects.

In Java, the basis of encapsulation is the class. Although the class will be examined in great
detail later in this book, the following brief discussion will be helpful now. A class defines
the structure and behavior (data and code) that will be shared by a set of objects. Each object
of a given class contains the structure and behavior defined by the class, as if it were stamped
out by a mold in the shape of the class. For this reason, objects are sometimes referred to as
instances of a class. Thus, a class is a logical construct; an object has physical reality.

When you create a class, you will specify the code and data that constitute that class.
Collectively, these elements are called members of the class. Specifically, the data defined by
the class are referred to as member variables or instance variables. The code that operates on
that data is referred to as member methods or just methods. (If you are familiar with C/C++, it
may help to know that what a Java programmer calls a method, a C/C++ programmer calls a
function.) In properly written Java programs, the methods define how the member variables
can be used. This means that the behavior and interface of a class are defined by the methods
that operate on its instance data.

Since the purpose of a class is to encapsulate complexity, there are mechanisms for
hiding the complexity of the implementation inside the class. Each method or variable in a
class may be marked private or public. The public interface of a class represents everything
that external users of the class need to know, or may know. The private methods and data
can only be accessed by code that is a member of the class. Therefore, any other code that
is not a member of the class cannot access a private method or variable. Since the private
members of a class may only be accessed by other parts of your program through the class’
public methods, you can ensure that no improper actions take place. Of course, this means
that the public interface should be carefully designed not to expose too much of the inner
workings of a class (see Figure 2-1).

Inheritance
Inheritance is the process by which one object acquires the properties of another object. This
is important because it supports the concept of hierarchical classification. As mentioned
earlier, most knowledge is made manageable by hierarchical (that is, top-down) classifications.
For example, a Golden Retriever is part of the classification dog, which in turn is part of the
mammal class, which is under the larger class animal. Without the use of hierarchies, each
object would need to define all of its characteristics explicitly. However, by use of inheritance,
an object need only define those qualities that make it unique within its class. It can inherit
its general attributes from its parent. Thus, it is the inheritance mechanism that makes it
possible for one object to be a specific instance of a more general case. Let’s take a closer
look at this process.

18 P a r t I : T h e J a v a L a n g u a g e

Most people naturally view the world as made up of objects that are related to each
other in a hierarchical way, such as animals, mammals, and dogs. If you wanted to describe
animals in an abstract way, you would say they have some attributes, such as size, intelligence,
and type of skeletal system. Animals also have certain behavioral aspects; they eat, breathe,
and sleep. This description of attributes and behavior is the class definition for animals.

If you wanted to describe a more specific class of animals, such as mammals, they would
have more specific attributes, such as type of teeth, and mammary glands. This is known as
a subclass of animals, where animals are referred to as mammals’ superclass.

Since mammals are simply more precisely specified animals, they inherit all of the attributes
from animals. A deeply inherited subclass inherits all of the attributes from each of its ancestors
in the class hierarchy.

FIGURE 2-1
Encapsulation:
public methods
can be used to
protect private
data

C h a p t e r 2 : A n O v e r v i e w o f J a v a 19

Inheritance interacts with encapsulation as well. If a given class encapsulates some
attributes, then any subclass will have the same attributes plus any that it adds as part of its
specialization (see Figure 2-2). This is a key concept that lets object-oriented programs grow
in complexity linearly rather than geometrically. A new subclass inherits all of the attributes
of all of its ancestors. It does not have unpredictable interactions with the majority of the rest
of the code in the system.

Polymorphism
Polymorphism (from Greek, meaning “many forms”) is a feature that allows one interface to
be used for a general class of actions. The specific action is determined by the exact nature

FIGURE 2-2 Labrador inherits the encapsulation of all its superclasses

20 P a r t I : T h e J a v a L a n g u a g e

of the situation. Consider a stack (which is a last-in, first-out list). You might have a program
that requires three types of stacks. One stack is used for integer values, one for floating-point
values, and one for characters. The algorithm that implements each stack is the same, even
though the data being stored differs. In a non–object-oriented language, you would be
required to create three different sets of stack routines, with each set using different names.
However, because of polymorphism, in Java you can specify a general set of stack routines
that all share the same names.

More generally, the concept of polymorphism is often expressed by the phrase “one
interface, multiple methods.” This means that it is possible to design a generic interface to
a group of related activities. This helps reduce complexity by allowing the same interface
to be used to specify a general class of action. It is the compiler’s job to select the specific action
(that is, method) as it applies to each situation. You, the programmer, do not need to make
this selection manually. You need only remember and utilize the general interface.

Extending the dog analogy, a dog’s sense of smell is polymorphic. If the dog smells a cat,
it will bark and run after it. If the dog smells its food, it will salivate and run to its bowl.
The same sense of smell is at work in both situations. The difference is what is being smelled,
that is, the type of data being operated upon by the dog’s nose! This same general concept
can be implemented in Java as it applies to methods within a Java program.

Polymorphism, Encapsulation, and Inheritance Work Together
When properly applied, polymorphism, encapsulation, and inheritance combine to produce
a programming environment that supports the development of far more robust and scalable
programs than does the process-oriented model. A well-designed hierarchy of classes is the
basis for reusing the code in which you have invested time and effort developing and testing.
Encapsulation allows you to migrate your implementations over time without breaking the
code that depends on the public interface of your classes. Polymorphism allows you to create
clean, sensible, readable, and resilient code.

Of the two real-world examples, the automobile more completely illustrates the power
of object-oriented design. Dogs are fun to think about from an inheritance standpoint, but
cars are more like programs. All drivers rely on inheritance to drive different types (subclasses)
of vehicles. Whether the vehicle is a school bus, a Mercedes sedan, a Porsche, or the family
minivan, drivers can all more or less find and operate the steering wheel, the brakes, and
the accelerator. After a bit of gear grinding, most people can even manage the difference
between a stick shift and an automatic, because they fundamentally understand their common
superclass, the transmission.

People interface with encapsulated features on cars all the time. The brake and gas pedals
hide an incredible array of complexity with an interface so simple you can operate them
with your feet! The implementation of the engine, the style of brakes, and the size of the
tires have no effect on how you interface with the class definition of the pedals.

The final attribute, polymorphism, is clearly reflected in the ability of car manufacturers
to offer a wide array of options on basically the same vehicle. For example, you can get an
antilock braking system or traditional brakes, power or rack-and-pinion steering, and 4-, 6-,
or 8-cylinder engines. Either way, you will still press the brake pedal to stop, turn the steering
wheel to change direction, and press the accelerator when you want to move. The same
interface can be used to control a number of different implementations.

As you can see, it is through the application of encapsulation, inheritance, and
polymorphism that the individual parts are transformed into the object known as a car.
The same is also true of computer programs. By the application of object-oriented principles,
the various parts of a complex program can be brought together to form a cohesive, robust,
maintainable whole.

As mentioned at the start of this section, every Java program is object-oriented. Or, put
more precisely, every Java program involves encapsulation, inheritance, and polymorphism.
Although the short example programs shown in the rest of this chapter and in the next few
chapters may not seem to exhibit all of these features, they are nevertheless present. As you
will see, many of the features supplied by Java are part of its built-in class libraries, which
do make extensive use of encapsulation, inheritance, and polymorphism.

A First Simple Program
Now that the basic object-oriented underpinning of Java has been discussed, let’s look at
some actual Java programs. Let’s start by compiling and running the short sample program
shown here. As you will see, this involves a little more work than you might imagine.

/*
This is a simple Java program.
Call this file "Example.java".

*/
class Example {
// Your program begins with a call to main().
public static void main(String args[]) {
System.out.println("This is a simple Java program.");

}
}

NOTEOTE The descriptions that follow use the standard Java SE 6 Development Kit (JDK 6), which is
available from Sun Microsystems. If you are using a different Java development environment,
then you may need to follow a different procedure for compiling and executing Java programs.
In this case, consult your compiler’s documentation for details.

Entering the Program
For most computer languages, the name of the file that holds the source code to a program
is immaterial. However, this is not the case with Java. The first thing that you must learn
about Java is that the name you give to a source file is very important. For this example,
the name of the source file should be Example.java. Let’s see why.

In Java, a source file is officially called a compilation unit. It is a text file that contains one
or more class definitions. The Java compiler requires that a source file use the .java filename
extension.

As you can see by looking at the program, the name of the class defined by the program
is also Example. This is not a coincidence. In Java, all code must reside inside a class. By
convention, the name of that class should match the name of the file that holds the program.
You should also make sure that the capitalization of the filename matches the class name.

C h a p t e r 2 : A n O v e r v i e w o f J a v a 21

The reason for this is that Java is case-sensitive. At this point, the convention that filenames
correspond to class names may seem arbitrary. However, this convention makes it easier to
maintain and organize your programs.

Compiling the Program
To compile the Example program, execute the compiler, javac, specifying the name of the
source file on the command line, as shown here:

C:\>javac Example.java

The javac compiler creates a file called Example.class that contains the bytecode version
of the program. As discussed earlier, the Java bytecode is the intermediate representation of
your program that contains instructions the Java Virtual Machine will execute. Thus, the
output of javac is not code that can be directly executed.

To actually run the program, you must use the Java application launcher, called java.
To do so, pass the class name Example as a command-line argument, as shown here:

C:\>java Example

When the program is run, the following output is displayed:

This is a simple Java program.

When Java source code is compiled, each individual class is put into its own output file
named after the class and using the .class extension. This is why it is a good idea to give
your Java source files the same name as the class they contain—the name of the source file
will match the name of the .class file. When you execute java as just shown, you are actually
specifying the name of the class that you want to execute. It will automatically search for
a file by that name that has the .class extension. If it finds the file, it will execute the code
contained in the specified class.

A Closer Look at the First Sample Program
Although Example.java is quite short, it includes several key features that are common to
all Java programs. Let’s closely examine each part of the program.

The program begins with the following lines:

/*
This is a simple Java program.
Call this file "Example.java".

*/

This is a comment. Like most other programming languages, Java lets you enter a remark into
a program’s source file. The contents of a comment are ignored by the compiler. Instead, a
comment describes or explains the operation of the program to anyone who is reading its
source code. In this case, the comment describes the program and reminds you that the source
file should be called Example.java. Of course, in real applications, comments generally explain
how some part of the program works or what a specific feature does.

22 P a r t I : T h e J a v a L a n g u a g e

Java supports three styles of comments. The one shown at the top of the program is called
a multiline comment. This type of comment must begin with /* and end with */. Anything
between these two comment symbols is ignored by the compiler. As the name suggests, a
multiline comment may be several lines long.

The next line of code in the program is shown here:

class Example {

This line uses the keyword class to declare that a new class is being defined. Example is an
identifier that is the name of the class. The entire class definition, including all of its members,
will be between the opening curly brace ({) and the closing curly brace (}). For the moment,
don’t worry too much about the details of a class except to note that in Java, all program
activity occurs within one. This is one reason why all Java programs are (at least a little bit)
object-oriented.

The next line in the program is the single-line comment, shown here:

// Your program begins with a call to main().

This is the second type of comment supported by Java. A single-line comment begins with
a // and ends at the end of the line. As a general rule, programmers use multiline comments
for longer remarks and single-line comments for brief, line-by-line descriptions. The third
type of comment, a documentation comment, will be discussed in the “Comments” section later
in this chapter.

The next line of code is shown here:

public static void main(String args[]) {

This line begins the main() method. As the comment preceding it suggests, this is the line
at which the program will begin executing. All Java applications begin execution by calling
main(). The full meaning of each part of this line cannot be given now, since it involves
a detailed understanding of Java’s approach to encapsulation. However, since most of the
examples in the first part of this book will use this line of code, let’s take a brief look at each
part now.

The public keyword is an access specifier, which allows the programmer to control the
visibility of class members. When a class member is preceded by public, then that member
may be accessed by code outside the class in which it is declared. (The opposite of public
is private, which prevents a member from being used by code defined outside of its class.)
In this case, main() must be declared as public, since it must be called by code outside of
its class when the program is started. The keyword static allows main() to be called without
having to instantiate a particular instance of the class. This is necessary since main() is
called by the Java Virtual Machine before any objects are made. The keyword void simply
tells the compiler that main() does not return a value. As you will see, methods may also
return values. If all this seems a bit confusing, don’t worry. All of these concepts will be
discussed in detail in subsequent chapters.

As stated, main() is the method called when a Java application begins. Keep in mind that
Java is case-sensitive. Thus, Main is different from main. It is important to understand that
the Java compiler will compile classes that do not contain a main() method. But java has no
way to run these classes. So, if you had typed Main instead of main, the compiler would

C h a p t e r 2 : A n O v e r v i e w o f J a v a 23

24 P a r t I : T h e J a v a L a n g u a g e

still compile your program. However, java would report an error because it would be unable
to find the main() method.

Any information that you need to pass to a method is received by variables specified
within the set of parentheses that follow the name of the method. These variables are called
parameters. If there are no parameters required for a given method, you still need to include
the empty parentheses. In main(), there is only one parameter, albeit a complicated one. String
args[] declares a parameter named args, which is an array of instances of the class String.
(Arrays are collections of similar objects.) Objects of type String store character strings. In this
case, args receives any command-line arguments present when the program is executed.
This program does not make use of this information, but other programs shown later in this
book will.

The last character on the line is the {. This signals the start of main()’s body. All of the
code that comprises a method will occur between the method’s opening curly brace and its
closing curly brace.

One other point: main() is simply a starting place for your program. A complex program
will have dozens of classes, only one of which will need to have a main() method to get
things started. When you begin creating applets—Java programs that are embedded in web
browsers—you won’t use main() at all, since the web browser uses a different means of
starting the execution of applets.

The next line of code is shown here. Notice that it occurs inside main().

System.out.println("This is a simple Java program.");

This line outputs the string “This is a simple Java program.” followed by a new line on the
screen. Output is actually accomplished by the built-in println() method. In this case, println()
displays the string which is passed to it. As you will see, println() can be used to display
other types of information, too. The line begins with System.out. While too complicated to
explain in detail at this time, briefly, System is a predefined class that provides access to the
system, and out is the output stream that is connected to the console.

As you have probably guessed, console output (and input) is not used frequently in
most real-world Java programs and applets. Since most modern computing environments
are windowed and graphical in nature, console I/O is used mostly for simple utility
programs and for demonstration programs. Later in this book, you will learn other ways to
generate output using Java. But for now, we will continue to use the console I/O methods.

Notice that the println() statement ends with a semicolon. All statements in Java end
with a semicolon. The reason that the other lines in the program do not end in a semicolon
is that they are not, technically, statements.

The first } in the program ends main(), and the last } ends the Example class definition.

A Second Short Program
Perhaps no other concept is more fundamental to a programming language than that of a
variable. As you probably know, a variable is a named memory location that may be assigned
a value by your program. The value of a variable may be changed during the execution of
the program. The next program shows how a variable is declared and how it is assigned a
value. The program also illustrates some new aspects of console output. As the comments
at the top of the program state, you should call this file Example2.java.

C h a p t e r 2 : A n O v e r v i e w o f J a v a 25

/*
Here is another short example.
Call this file "Example2.java".

*/

class Example2 {
public static void main(String args[]) {
int num; // this declares a variable called num

num = 100; // this assigns num the value 100

System.out.println("This is num: " + num);

num = num * 2;

System.out.print("The value of num * 2 is ");
System.out.println(num);

}
}

When you run this program, you will see the following output:

This is num: 100
The value of num * 2 is 200

Let’s take a close look at why this output is generated. The first new line in the program
is shown here:

int num; // this declares a variable called num

This line declares an integer variable called num. Java (like most other languages) requires
that variables be declared before they are used.

Following is the general form of a variable declaration:

type var-name;

Here, type specifies the type of variable being declared, and var-name is the name of the variable.
If you want to declare more than one variable of the specified type, you may use a comma-
separated list of variable names. Java defines several data types, including integer, character,
and floating-point. The keyword int specifies an integer type.

In the program, the line

num = 100; // this assigns num the value 100

assigns to num the value 100. In Java, the assignment operator is a single equal sign.
The next line of code outputs the value of num preceded by the string “This is num:”.

System.out.println("This is num: " + num);

In this statement, the plus sign causes the value of num to be appended to the string that
precedes it, and then the resulting string is output. (Actually, num is first converted from an
integer into its string equivalent and then concatenated with the string that precedes it. This

process is described in detail later in this book.) This approach can be generalized. Using
the + operator, you can join together as many items as you want within a single println()
statement.

The next line of code assigns num the value of num times 2. Like most other languages,
Java uses the * operator to indicate multiplication. After this line executes, num will contain
the value 200.

Here are the next two lines in the program:

System.out.print("The value of num * 2 is ");
System.out.println(num);

Several new things are occurring here. First, the built-in method print() is used to display
the string “The value of num * 2 is ”. This string is not followed by a newline. This means
that when the next output is generated, it will start on the same line. The print() method is
just like println(), except that it does not output a newline character after each call. Now
look at the call to println(). Notice that num is used by itself. Both print() and println()
can be used to output values of any of Java’s built-in types.

Two Control Statements
Although Chapter 5 will look closely at control statements, two are briefly introduced here so
that they can be used in example programs in Chapters 3 and 4. They will also help illustrate
an important aspect of Java: blocks of code.

The if Statement
The Java if statement works much like the IF statement in any other language. Further, it is
syntactically identical to the if statements in C, C++, and C#. Its simplest form is shown here:

if(condition) statement;

Here, condition is a Boolean expression. If condition is true, then the statement is executed.
If condition is false, then the statement is bypassed. Here is an example:

if(num < 100) System.out.println("num is less than 100");

In this case, if num contains a value that is less than 100, the conditional expression is
true, and println() will execute. If num contains a value greater than or equal to 100, then
the println() method is bypassed.

As you will see in Chapter 4, Java defines a full complement of relational operators
which may be used in a conditional expression. Here are a few:

Operator Meaning

< Less than

> Greater than

== Equal to

Notice that the test for equality is the double equal sign.

26 P a r t I : T h e J a v a L a n g u a g e

C h a p t e r 2 : A n O v e r v i e w o f J a v a 27

Here is a program that illustrates the if statement:

/*
Demonstrate the if.

Call this file "IfSample.java".
*/
class IfSample {
public static void main(String args[]) {
int x, y;

x = 10;
y = 20;

if(x < y) System.out.println("x is less than y");

x = x * 2;
if(x == y) System.out.println("x now equal to y");

x = x * 2;
if(x > y) System.out.println("x now greater than y");

// this won't display anything
if(x == y) System.out.println("you won't see this");

}
}

The output generated by this program is shown here:

x is less than y
x now equal to y
x now greater than y

Notice one other thing in this program. The line

int x, y;

declares two variables, x and y, by use of a comma-separated list.

The for Loop
As you may know from your previous programming experience, loop statements are an
important part of nearly any programming language. Java is no exception. In fact, as you
will see in Chapter 5, Java supplies a powerful assortment of loop constructs. Perhaps the
most versatile is the for loop. The simplest form of the for loop is shown here:

for(initialization; condition; iteration) statement;

In its most common form, the initialization portion of the loop sets a loop control variable
to an initial value. The condition is a Boolean expression that tests the loop control variable.
If the outcome of that test is true, the for loop continues to iterate. If it is false, the loop

terminates. The iteration expression determines how the loop control variable is changed
each time the loop iterates. Here is a short program that illustrates the for loop:

/*
Demonstrate the for loop.

Call this file "ForTest.java".
*/
class ForTest {
public static void main(String args[]) {
int x;

for(x = 0; x<10; x = x+1)
System.out.println("This is x: " + x);

}
}

This program generates the following output:

This is x: 0
This is x: 1
This is x: 2
This is x: 3
This is x: 4
This is x: 5
This is x: 6
This is x: 7
This is x: 8
This is x: 9

In this example, x is the loop control variable. It is initialized to zero in the initialization portion
of the for. At the start of each iteration (including the first one), the conditional test x < 10 is
performed. If the outcome of this test is true, the println() statement is executed, and then
the iteration portion of the loop is executed. This process continues until the conditional test
is false.

As a point of interest, in professionally written Java programs you will almost never see
the iteration portion of the loop written as shown in the preceding program. That is, you will
seldom see statements like this:

x = x + 1;

The reason is that Java includes a special increment operator which performs this operation
more efficiently. The increment operator is ++. (That is, two plus signs back to back.) The
increment operator increases its operand by one. By use of the increment operator, the
preceding statement can be written like this:

x++;

Thus, the for in the preceding program will usually be written like this:

28 P a r t I : T h e J a v a L a n g u a g e

C h a p t e r 2 : A n O v e r v i e w o f J a v a 29

for(x = 0; x<10; x++)

You might want to try this. As you will see, the loop still runs exactly the same as it did
before.

Java also provides a decrement operator, which is specified as – –. This operator decreases
its operand by one.

Using Blocks of Code
Java allows two or more statements to be grouped into blocks of code, also called code blocks.
This is done by enclosing the statements between opening and closing curly braces. Once a
block of code has been created, it becomes a logical unit that can be used any place that a
single statement can. For example, a block can be a target for Java’s if and for statements.
Consider this if statement:

if(x < y) { // begin a block
x = y;
y = 0;

} // end of block

Here, if x is less than y, then both statements inside the block will be executed. Thus, the two
statements inside the block form a logical unit, and one statement cannot execute without
the other also executing. The key point here is that whenever you need to logically link two
or more statements, you do so by creating a block.

Let’s look at another example. The following program uses a block of code as the target
of a for loop.

/*
Demonstrate a block of code.

Call this file "BlockTest.java"
*/
class BlockTest {
public static void main(String args[]) {
int x, y;

y = 20;

// the target of this loop is a block
for(x = 0; x<10; x++) {
System.out.println("This is x: " + x);
System.out.println("This is y: " + y);
y = y - 2;

}
}

}

The output generated by this program is shown here:

This is x: 0
This is y: 20

30 P a r t I : T h e J a v a L a n g u a g e

This is x: 1
This is y: 18
This is x: 2
This is y: 16
This is x: 3
This is y: 14
This is x: 4
This is y: 12
This is x: 5
This is y: 10
This is x: 6
This is y: 8
This is x: 7
This is y: 6
This is x: 8
This is y: 4
This is x: 9
This is y: 2

In this case, the target of the for loop is a block of code and not just a single statement.
Thus, each time the loop iterates, the three statements inside the block will be executed.
This fact is, of course, evidenced by the output generated by the program.

As you will see later in this book, blocks of code have additional properties and uses.
However, the main reason for their existence is to create logically inseparable units of code.

Lexical Issues
Now that you have seen several short Java programs, it is time to more formally describe
the atomic elements of Java. Java programs are a collection of whitespace, identifiers, literals,
comments, operators, separators, and keywords. The operators are described in the next
chapter. The others are described next.

Whitespace
Java is a free-form language. This means that you do not need to follow any special indentation
rules. For instance, the Example program could have been written all on one line or in any
other strange way you felt like typing it, as long as there was at least one whitespace character
between each token that was not already delineated by an operator or separator. In Java,
whitespace is a space, tab, or newline.

Identifiers
Identifiers are used for class names, method names, and variable names. An identifier may
be any descriptive sequence of uppercase and lowercase letters, numbers, or the underscore
and dollar-sign characters. They must not begin with a number, lest they be confused with a
numeric literal. Again, Java is case-sensitive, so VALUE is a different identifier than Value.
Some examples of valid identifiers are

AvgTemp count a4 $test this_is_ok

C h a p t e r 2 : A n O v e r v i e w o f J a v a 31

Invalid identifier names include these:

2count high-temp Not/ok

Literals
A constant value in Java is created by using a literal representation of it. For example, here
are some literals:

100 98.6 'X' "This is a test"

Left to right, the first literal specifies an integer, the next is a floating-point value, the third is
a character constant, and the last is a string. A literal can be used anywhere a value of its type
is allowed.

Comments
As mentioned, there are three types of comments defined by Java. You have already seen two:
single-line and multiline. The third type is called a documentation comment. This type of comment
is used to produce an HTML file that documents your program. The documentation comment
begins with a /** and ends with a */. Documentation comments are explained in Appendix A.

Separators
In Java, there are a few characters that are used as separators. The most commonly used
separator in Java is the semicolon. As you have seen, it is used to terminate statements.
The separators are shown in the following table:

Symbol Name Purpose

() Parentheses Used to contain lists of parameters in method definition and invocation.
Also used for defining precedence in expressions, containing expressions
in control statements, and surrounding cast types.

{ } Braces Used to contain the values of automatically initialized arrays. Also used
to define a block of code, for classes, methods, and local scopes.

[] Brackets Used to declare array types. Also used when dereferencing array values.

; Semicolon Terminates statements.

, Comma Separates consecutive identifiers in a variable declaration. Also used to
chain statements together inside a for statement.

. Period Used to separate package names from subpackages and classes. Also
used to separate a variable or method from a reference variable.

The Java Keywords
There are 50 keywords currently defined in the Java language (see Table 2-1). These keywords,
combined with the syntax of the operators and separators, form the foundation of the Java
language. These keywords cannot be used as names for a variable, class, or method.

32 P a r t I : T h e J a v a L a n g u a g e

The keywords const and goto are reserved but not used. In the early days of Java, several
other keywords were reserved for possible future use. However, the current specification for
Java only defines the keywords shown in Table 2-1.

In addition to the keywords, Java reserves the following: true, false, and null. These are
values defined by Java. You may not use these words for the names of variables, classes,
and so on.

The Java Class Libraries
The sample programs shown in this chapter make use of two of Java’s built-in methods:
println() and print(). As mentioned, these methods are members of the System class,
which is a class predefined by Java that is automatically included in your programs. In the
larger view, the Java environment relies on several built-in class libraries that contain many
built-in methods that provide support for such things as I/O, string handling, networking,
and graphics. The standard classes also provide support for windowed output. Thus, Java
as a totality is a combination of the Java language itself, plus its standard classes. As you
will see, the class libraries provide much of the functionality that comes with Java. Indeed,
part of becoming a Java programmer is learning to use the standard Java classes. Throughout
Part I of this book, various elements of the standard library classes and methods are described
as needed. In Part II, the class libraries are described in detail.

abstract continue for new switch

assert default goto package synchronized

boolean do if private this

break double implements protected throw

byte else import public throws

case enum instanceof return transient

catch extends int short try

char final interface static void

class finally long strictfp volatile

const float native super while

TABLE 2-1 Java Keywords

3
Data Types, Variables,

and Arrays

This chapter examines three of Java’s most fundamental elements: data types, variables,
and arrays. As with all modern programming languages, Java supports several types
of data. You may use these types to declare variables and to create arrays. As you will

see, Java’s approach to these items is clean, efficient, and cohesive.

Java Is a Strongly Typed Language
It is important to state at the outset that Java is a strongly typed language. Indeed, part of
Java’s safety and robustness comes from this fact. Let’s see what this means. First, every
variable has a type, every expression has a type, and every type is strictly defined. Second,
all assignments, whether explicit or via parameter passing in method calls, are checked for
type compatibility. There are no automatic coercions or conversions of conflicting types as
in some languages. The Java compiler checks all expressions and parameters to ensure that
the types are compatible. Any type mismatches are errors that must be corrected before the
compiler will finish compiling the class.

The Primitive Types
Java defines eight primitive types of data: byte, short, int, long, char, float, double, and boolean.
The primitive types are also commonly referred to as simple types, and both terms will be
used in this book. These can be put in four groups:

• Integers This group includes byte, short, int, and long, which are for whole-valued
signed numbers.

• Floating-point numbers This group includes float and double, which represent
numbers with fractional precision.

3 3

• Characters This group includes char, which represents symbols in a character set,
like letters and numbers.

• Boolean This group includes boolean, which is a special type for representing
true/false values.

You can use these types as-is, or to construct arrays or your own class types. Thus, they
form the basis for all other types of data that you can create.

The primitive types represent single values—not complex objects. Although Java is
otherwise completely object-oriented, the primitive types are not. They are analogous to
the simple types found in most other non–object-oriented languages. The reason for this is
efficiency. Making the primitive types into objects would have degraded performance too much.

The primitive types are defined to have an explicit range and mathematical behavior.
Languages such as C and C++ allow the size of an integer to vary based upon the dictates
of the execution environment. However, Java is different. Because of Java’s portability
requirement, all data types have a strictly defined range. For example, an int is always 32 bits,
regardless of the particular platform. This allows programs to be written that are guaranteed
to run without porting on any machine architecture. While strictly specifying the size of an
integer may cause a small loss of performance in some environments, it is necessary in order
to achieve portability.

Let’s look at each type of data in turn.

Integers
Java defines four integer types: byte, short, int, and long. All of these are signed, positive
and negative values. Java does not support unsigned, positive-only integers. Many other
computer languages support both signed and unsigned integers. However, Java’s designers
felt that unsigned integers were unnecessary. Specifically, they felt that the concept of unsigned
was used mostly to specify the behavior of the high-order bit, which defines the sign of an integer
value. As you will see in Chapter 4, Java manages the meaning of the high-order bit differently,
by adding a special “unsigned right shift” operator. Thus, the need for an unsigned integer type
was eliminated.

The width of an integer type should not be thought of as the amount of storage it consumes,
but rather as the behavior it defines for variables and expressions of that type. The Java run-time
environment is free to use whatever size it wants, as long as the types behave as you declared
them. The width and ranges of these integer types vary widely, as shown in this table:

Name Width Range

long 64 –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

int 32 –2,147,483,648 to 2,147,483,647

short 16 –32,768 to 32,767

byte 8 –128 to 127

Let’s look at each type of integer.

34 P a r t I : T h e J a v a L a n g u a g e

byte
The smallest integer type is byte. This is a signed 8-bit type that has a range from –128 to 127.
Variables of type byte are especially useful when you’re working with a stream of data from
a network or file. They are also useful when you’re working with raw binary data that may
not be directly compatible with Java’s other built-in types.

Byte variables are declared by use of the byte keyword. For example, the following
declares two byte variables called b and c:

byte b, c;

short
short is a signed 16-bit type. It has a range from –32,768 to 32,767. It is probably the least-used
Java type. Here are some examples of short variable declarations:

short s;
short t;

int
The most commonly used integer type is int. It is a signed 32-bit type that has a range
from –2,147,483,648 to 2,147,483,647. In addition to other uses, variables of type int are
commonly employed to control loops and to index arrays. Although you might think that
using a byte or short would be more efficient than using an int in situations in which the
larger range of an int is not needed, this may not be the case. The reason is that when byte
and short values are used in an expression they are promoted to int when the expression is
evaluated. (Type promotion is described later in this chapter.) Therefore, int is often the best
choice when an integer is needed.

long
long is a signed 64-bit type and is useful for those occasions where an int type is not large
enough to hold the desired value. The range of a long is quite large. This makes it useful
when big, whole numbers are needed. For example, here is a program that computes the
number of miles that light will travel in a specified number of days.

// Compute distance light travels using long variables.
class Light {
public static void main(String args[]) {
int lightspeed;
long days;
long seconds;
long distance;

// approximate speed of light in miles per second
lightspeed = 186000;

days = 1000; // specify number of days here

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 35

36 P a r t I : T h e J a v a L a n g u a g e

seconds = days * 24 * 60 * 60; // convert to seconds

distance = lightspeed * seconds; // compute distance

System.out.print("In " + days);
System.out.print(" days light will travel about ");
System.out.println(distance + " miles.");

}
}

This program generates the following output:

In 1000 days light will travel about 16070400000000 miles.

Clearly, the result could not have been held in an int variable.

Floating-Point Types
Floating-point numbers, also known as real numbers, are used when evaluating expressions
that require fractional precision. For example, calculations such as square root, or transcendentals
such as sine and cosine, result in a value whose precision requires a floating-point type. Java
implements the standard (IEEE–754) set of floating-point types and operators. There are two
kinds of floating-point types, float and double, which represent single- and double-precision
numbers, respectively. Their width and ranges are shown here:

Name Width in Bits Approximate Range

double 64 4.9e–324 to 1.8e+308

float 32 1.4e–045 to 3.4e+038

Each of these floating-point types is examined next.

float
The type float specifies a single-precision value that uses 32 bits of storage. Single precision is
faster on some processors and takes half as much space as double precision, but will become
imprecise when the values are either very large or very small. Variables of type float are useful
when you need a fractional component, but don’t require a large degree of precision. For
example, float can be useful when representing dollars and cents.

Here are some example float variable declarations:

float hightemp, lowtemp;

double
Double precision, as denoted by the double keyword, uses 64 bits to store a value. Double
precision is actually faster than single precision on some modern processors that have been
optimized for high-speed mathematical calculations. All transcendental math functions, such
as sin(), cos(), and sqrt(), return double values. When you need to maintain accuracy over

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 37

many iterative calculations, or are manipulating large-valued numbers, double is the best
choice.

Here is a short program that uses double variables to compute the area of a circle:

// Compute the area of a circle.
class Area {
public static void main(String args[]) {
double pi, r, a;

r = 10.8; // radius of circle
pi = 3.1416; // pi, approximately
a = pi * r * r; // compute area

System.out.println("Area of circle is " + a);
}

}

Characters
In Java, the data type used to store characters is char. However, C/C++ programmers beware:
char in Java is not the same as char in C or C++. In C/C++, char is 8 bits wide. This is not the
case in Java. Instead, Java uses Unicode to represent characters. Unicode defines a fully
international character set that can represent all of the characters found in all human
languages. It is a unification of dozens of character sets, such as Latin, Greek, Arabic, Cyrillic,
Hebrew, Katakana, Hangul, and many more. For this purpose, it requires 16 bits. Thus, in
Java char is a 16-bit type. The range of a char is 0 to 65,536. There are no negative chars.
The standard set of characters known as ASCII still ranges from 0 to 127 as always, and the
extended 8-bit character set, ISO-Latin-1, ranges from 0 to 255. Since Java is designed to
allow programs to be written for worldwide use, it makes sense that it would use Unicode to
represent characters. Of course, the use of Unicode is somewhat inefficient for languages such
as English, German, Spanish, or French, whose characters can easily be contained within 8 bits.
But such is the price that must be paid for global portability.

NOTEOTE More information about Unicode can be found at http://www.unicode.org.

Here is a program that demonstrates char variables:

// Demonstrate char data type.
class CharDemo {
public static void main(String args[]) {
char ch1, ch2;

ch1 = 88; // code for X
ch2 = 'Y';

System.out.print("ch1 and ch2: ");
System.out.println(ch1 + " " + ch2);

}
}

http://www.unicode.org

38 P a r t I : T h e J a v a L a n g u a g e

This program displays the following output:

ch1 and ch2: X Y

Notice that ch1 is assigned the value 88, which is the ASCII (and Unicode) value that
corresponds to the letter X. As mentioned, the ASCII character set occupies the first 127
values in the Unicode character set. For this reason, all the “old tricks” that you may have
used with characters in other languages will work in Java, too.

Although char is designed to hold Unicode characters, it can also be thought of as an
integer type on which you can perform arithmetic operations. For example, you can add
two characters together, or increment the value of a character variable. Consider the
following program:

// char variables behave like integers.
class CharDemo2 {
public static void main(String args[]) {
char ch1;

ch1 = 'X';
System.out.println("ch1 contains " + ch1);

ch1++; // increment ch1
System.out.println("ch1 is now " + ch1);

}
}

The output generated by this program is shown here:

ch1 contains X
ch1 is now Y

In the program, ch1 is first given the value X. Next, ch1 is incremented. This results in ch1
containing Y, the next character in the ASCII (and Unicode) sequence.

Booleans
Java has a primitive type, called boolean, for logical values. It can have only one of two
possible values, true or false. This is the type returned by all relational operators, as in the
case of a < b. boolean is also the type required by the conditional expressions that govern
the control statements such as if and for.

Here is a program that demonstrates the boolean type:

// Demonstrate boolean values.
class BoolTest {
public static void main(String args[]) {
boolean b;

b = false;
System.out.println("b is " + b);
b = true;
System.out.println("b is " + b);

// a boolean value can control the if statement

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 39

if(b) System.out.println("This is executed.");

b = false;
if(b) System.out.println("This is not executed.");

// outcome of a relational operator is a boolean value
System.out.println("10 > 9 is " + (10 > 9));

}
}

The output generated by this program is shown here:

b is false
b is true
This is executed.
10 > 9 is true

There are three interesting things to notice about this program. First, as you can see, when
a boolean value is output by println(), “true” or “false” is displayed. Second, the value of a
boolean variable is sufficient, by itself, to control the if statement. There is no need to write
an if statement like this:

if(b == true) ...

Third, the outcome of a relational operator, such as <, is a boolean value. This is why the
expression 10 > 9 displays the value “true.” Further, the extra set of parentheses around 10 > 9
is necessary because the + operator has a higher precedence than the >.

A Closer Look at Literals
Literals were mentioned briefly in Chapter 2. Now that the built-in types have been formally
described, let’s take a closer look at them.

Integer Literals
Integers are probably the most commonly used type in the typical program. Any whole
number value is an integer literal. Examples are 1, 2, 3, and 42. These are all decimal values,
meaning they are describing a base 10 number. There are two other bases which can be used
in integer literals, octal (base eight) and hexadecimal (base 16). Octal values are denoted in Java
by a leading zero. Normal decimal numbers cannot have a leading zero. Thus, the seemingly
valid value 09 will produce an error from the compiler, since 9 is outside of octal’s 0 to 7 range.
A more common base for numbers used by programmers is hexadecimal, which matches
cleanly with modulo 8 word sizes, such as 8, 16, 32, and 64 bits. You signify a hexadecimal
constant with a leading zero-x, (0x or 0X). The range of a hexadecimal digit is 0 to 15, so A
through F (or a through f) are substituted for 10 through 15.

Integer literals create an int value, which in Java is a 32-bit integer value. Since Java is
strongly typed, you might be wondering how it is possible to assign an integer literal to one
of Java’s other integer types, such as byte or long, without causing a type mismatch error.
Fortunately, such situations are easily handled. When a literal value is assigned to a byte or
short variable, no error is generated if the literal value is within the range of the target type.

40 P a r t I : T h e J a v a L a n g u a g e

An integer literal can always be assigned to a long variable. However, to specify a long
literal, you will need to explicitly tell the compiler that the literal value is of type long. You
do this by appending an upper- or lowercase L to the literal. For example, 0x7ffffffffffffffL
or 9223372036854775807L is the largest long. An integer can also be assigned to a char as
long as it is within range.

Floating-Point Literals
Floating-point numbers represent decimal values with a fractional component. They can be
expressed in either standard or scientific notation. Standard notation consists of a whole number
component followed by a decimal point followed by a fractional component. For example, 2.0,
3.14159, and 0.6667 represent valid standard-notation floating-point numbers. Scientific notation
uses a standard-notation, floating-point number plus a suffix that specifies a power of 10 by
which the number is to be multiplied. The exponent is indicated by an E or e followed by a
decimal number, which can be positive or negative. Examples include 6.022E23, 314159E–05,
and 2e+100.

Floating-point literals in Java default to double precision. To specify a float literal, you
must append an F or f to the constant. You can also explicitly specify a double literal by
appending a D or d. Doing so is, of course, redundant. The default double type consumes 64
bits of storage, while the less-accurate float type requires only 32 bits.

Boolean Literals
Boolean literals are simple. There are only two logical values that a boolean value can have,
true and false. The values of true and false do not convert into any numerical representation.
The true literal in Java does not equal 1, nor does the false literal equal 0. In Java, they can only
be assigned to variables declared as boolean, or used in expressions with Boolean operators.

Character Literals
Characters in Java are indices into the Unicode character set. They are 16-bit values that can
be converted into integers and manipulated with the integer operators, such as the addition
and subtraction operators. A literal character is represented inside a pair of single quotes. All
of the visible ASCII characters can be directly entered inside the quotes, such as ‘a’, ‘z’, and ‘@’.
For characters that are impossible to enter directly, there are several escape sequences that allow
you to enter the character you need, such as ‘\’’ for the single-quote character itself and ‘\n’ for
the newline character. There is also a mechanism for directly entering the value of a character in
octal or hexadecimal. For octal notation, use the backslash followed by the three-digit
number. For example, ‘\141’ is the letter ‘a’. For hexadecimal, you enter a backslash-u (\u), then
exactly four hexadecimal digits. For example, ‘\u0061’ is the ISO-Latin-1 ‘a’ because the top byte
is zero. ‘\ua432’ is a Japanese Katakana character. Table 3-1 shows the character escape sequences.

String Literals
String literals in Java are specified like they are in most other languages—by enclosing
a sequence of characters between a pair of double quotes. Examples of string literals are

“Hello World”
“two\nlines”
“\”This is in quotes\”“

The escape sequences and octal/hexadecimal notations that were defined for character
literals work the same way inside of string literals. One important thing to note about Java
strings is that they must begin and end on the same line. There is no line-continuation escape
sequence as there is in some other languages.

NOTEOTE As you may know, in some other languages, including C/C++, strings are implemented as
arrays of characters. However, this is not the case in Java. Strings are actually object types. As
you will see later in this book, because Java implements strings as objects, Java includes extensive
string-handling capabilities that are both powerful and easy to use.

Variables
The variable is the basic unit of storage in a Java program. A variable is defined by the
combination of an identifier, a type, and an optional initializer. In addition, all variables have
a scope, which defines their visibility, and a lifetime. These elements are examined next.

Declaring a Variable
In Java, all variables must be declared before they can be used. The basic form of a variable
declaration is shown here:

type identifier [= value][, identifier [= value] ...] ;

The type is one of Java’s atomic types, or the name of a class or interface. (Class and
interface types are discussed later in Part I of this book.) The identifier is the name of the
variable. You can initialize the variable by specifying an equal sign and a value. Keep in mind
that the initialization expression must result in a value of the same (or compatible) type as that
specified for the variable. To declare more than one variable of the specified type, use a comma-
separated list.

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 41

Escape Sequence Description

\ddd Octal character (ddd)

\uxxxx Hexadecimal Unicode character (xxxx)

\' Single quote

\" Double quote

\\ Backslash

\r Carriage return

\n New line (also known as line feed)

\f Form feed

\t Tab

\b Backspace

TABLE 3-1
Character Escape
Sequences

42 P a r t I : T h e J a v a L a n g u a g e

Here are several examples of variable declarations of various types. Note that some
include an initialization.

int a, b, c; // declares three ints, a, b, and c.
int d = 3, e, f = 5; // declares three more ints, initializing

// d and f.
byte z = 22; // initializes z.
double pi = 3.14159; // declares an approximation of pi.
char x = 'x'; // the variable x has the value 'x'.

The identifiers that you choose have nothing intrinsic in their names that indicates their
type. Java allows any properly formed identifier to have any declared type.

Dynamic Initialization
Although the preceding examples have used only constants as initializers, Java allows variables
to be initialized dynamically, using any expression valid at the time the variable is declared.

For example, here is a short program that computes the length of the hypotenuse of
a right triangle given the lengths of its two opposing sides:

// Demonstrate dynamic initialization.
class DynInit {

public static void main(String args[]) {
double a = 3.0, b = 4.0;

// c is dynamically initialized
double c = Math.sqrt(a * a + b * b);

System.out.println("Hypotenuse is " + c);
}

}

Here, three local variables—a, b, and c—are declared. The first two, a and b, are initialized
by constants. However, c is initialized dynamically to the length of the hypotenuse (using
the Pythagorean theorem). The program uses another of Java’s built-in methods, sqrt(), which
is a member of the Math class, to compute the square root of its argument. The key point here is
that the initialization expression may use any element valid at the time of the initialization,
including calls to methods, other variables, or literals.

The Scope and Lifetime of Variables
So far, all of the variables used have been declared at the start of the main() method. However,
Java allows variables to be declared within any block. As explained in Chapter 2, a block is
begun with an opening curly brace and ended by a closing curly brace. A block defines a
scope. Thus, each time you start a new block, you are creating a new scope. A scope determines
what objects are visible to other parts of your program. It also determines the lifetime of
those objects.

Many other computer languages define two general categories of scopes: global and local.
However, these traditional scopes do not fit well with Java’s strict, object-oriented model.
While it is possible to create what amounts to being a global scope, it is by far the exception,

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 43

not the rule. In Java, the two major scopes are those defined by a class and those defined by
a method. Even this distinction is somewhat artificial. However, since the class scope has
several unique properties and attributes that do not apply to the scope defined by a method,
this distinction makes some sense. Because of the differences, a discussion of class scope
(and variables declared within it) is deferred until Chapter 6, when classes are described.
For now, we will only examine the scopes defined by or within a method.

The scope defined by a method begins with its opening curly brace. However, if that
method has parameters, they too are included within the method’s scope. Although this book
will look more closely at parameters in Chapter 6, for the sake of this discussion, they work
the same as any other method variable.

As a general rule, variables declared inside a scope are not visible (that is, accessible) to
code that is defined outside that scope. Thus, when you declare a variable within a scope, you
are localizing that variable and protecting it from unauthorized access and/or modification.
Indeed, the scope rules provide the foundation for encapsulation.

Scopes can be nested. For example, each time you create a block of code, you are creating
a new, nested scope. When this occurs, the outer scope encloses the inner scope. This means
that objects declared in the outer scope will be visible to code within the inner scope. However,
the reverse is not true. Objects declared within the inner scope will not be visible outside it.

To understand the effect of nested scopes, consider the following program:

// Demonstrate block scope.
class Scope {
public static void main(String args[]) {
int x; // known to all code within main

x = 10;
if(x == 10) { // start new scope
int y = 20; // known only to this block

// x and y both known here.
System.out.println("x and y: " + x + " " + y);
x = y * 2;

}
// y = 100; // Error! y not known here

// x is still known here.
System.out.println("x is " + x);

}
}

As the comments indicate, the variable x is declared at the start of main()’s scope and is
accessible to all subsequent code within main(). Within the if block, y is declared. Since a
block defines a scope, y is only visible to other code within its block. This is why outside of
its block, the line y = 100; is commented out. If you remove the leading comment symbol, a
compile-time error will occur, because y is not visible outside of its block. Within the if block,
x can be used because code within a block (that is, a nested scope) has access to variables
declared by an enclosing scope.

44 P a r t I : T h e J a v a L a n g u a g e

Within a block, variables can be declared at any point, but are valid only after they are
declared. Thus, if you define a variable at the start of a method, it is available to all of the code
within that method. Conversely, if you declare a variable at the end of a block, it is effectively
useless, because no code will have access to it. For example, this fragment is invalid because
count cannot be used prior to its declaration:

// This fragment is wrong!
count = 100; // oops! cannot use count before it is declared!
int count;

Here is another important point to remember: variables are created when their scope is
entered, and destroyed when their scope is left. This means that a variable will not hold its
value once it has gone out of scope. Therefore, variables declared within a method will not
hold their values between calls to that method. Also, a variable declared within a block will
lose its value when the block is left. Thus, the lifetime of a variable is confined to its scope.

If a variable declaration includes an initializer, then that variable will be reinitialized each
time the block in which it is declared is entered. For example, consider the next program.

// Demonstrate lifetime of a variable.
class LifeTime {
public static void main(String args[]) {
int x;

for(x = 0; x < 3; x++) {
int y = -1; // y is initialized each time block is entered
System.out.println("y is: " + y); // this always prints -1
y = 100;
System.out.println("y is now: " + y);

}
}

}

The output generated by this program is shown here:

y is: -1
y is now: 100
y is: -1
y is now: 100
y is: -1
y is now: 100

As you can see, y is reinitialized to –1 each time the inner for loop is entered. Even though it
is subsequently assigned the value 100, this value is lost.

One last point: Although blocks can be nested, you cannot declare a variable to have the
same name as one in an outer scope. For example, the following program is illegal:

// This program will not compile
class ScopeErr {

public static void main(String args[]) {

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 45

int bar = 1;
{ // creates a new scope
int bar = 2; // Compile-time error – bar already defined!

}
}

}

Type Conversion and Casting
If you have previous programming experience, then you already know that it is fairly common
to assign a value of one type to a variable of another type. If the two types are compatible,
then Java will perform the conversion automatically. For example, it is always possible to
assign an int value to a long variable. However, not all types are compatible, and thus, not
all type conversions are implicitly allowed. For instance, there is no automatic conversion
defined from double to byte. Fortunately, it is still possible to obtain a conversion between
incompatible types. To do so, you must use a cast, which performs an explicit conversion
between incompatible types. Let’s look at both automatic type conversions and casting.

Java’s Automatic Conversions
When one type of data is assigned to another type of variable, an automatic type conversion
will take place if the following two conditions are met:

• The two types are compatible.

• The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For example, the
int type is always large enough to hold all valid byte values, so no explicit cast statement is
required.

For widening conversions, the numeric types, including integer and floating-point types,
are compatible with each other. However, there are no automatic conversions from the
numeric types to char or boolean. Also, char and boolean are not compatible with each other.

As mentioned earlier, Java also performs an automatic type conversion when storing a
literal integer constant into variables of type byte, short, long, or char.

Casting Incompatible Types
Although the automatic type conversions are helpful, they will not fulfill all needs. For
example, what if you want to assign an int value to a byte variable? This conversion will not
be performed automatically, because a byte is smaller than an int. This kind of conversion is
sometimes called a narrowing conversion, since you are explicitly making the value narrower
so that it will fit into the target type.

To create a conversion between two incompatible types, you must use a cast. A cast is
simply an explicit type conversion. It has this general form:

(target-type) value

46 P a r t I : T h e J a v a L a n g u a g e

Here, target-type specifies the desired type to convert the specified value to. For example, the
following fragment casts an int to a byte. If the integer’s value is larger than the range of a
byte, it will be reduced modulo (the remainder of an integer division by the) byte’s range.

int a;
byte b;
// ...
b = (byte) a;

A different type of conversion will occur when a floating-point value is assigned to an
integer type: truncation. As you know, integers do not have fractional components. Thus,
when a floating-point value is assigned to an integer type, the fractional component is lost.
For example, if the value 1.23 is assigned to an integer, the resulting value will simply be 1.
The 0.23 will have been truncated. Of course, if the size of the whole number component is
too large to fit into the target integer type, then that value will be reduced modulo the target
type’s range.

The following program demonstrates some type conversions that require casts:

// Demonstrate casts.
class Conversion {
public static void main(String args[]) {
byte b;
int i = 257;
double d = 323.142;

System.out.println("\nConversion of int to byte.");
b = (byte) i;
System.out.println("i and b " + i + " " + b);

System.out.println("\nConversion of double to int.");
i = (int) d;
System.out.println("d and i " + d + " " + i);

System.out.println("\nConversion of double to byte.");
b = (byte) d;
System.out.println("d and b " + d + " " + b);

}
}

This program generates the following output:

Conversion of int to byte.
i and b 257 1

Conversion of double to int.
d and i 323.142 323

Conversion of double to byte.
d and b 323.142 67

Let’s look at each conversion. When the value 257 is cast into a byte variable, the result
is the remainder of the division of 257 by 256 (the range of a byte), which is 1 in this case.
When the d is converted to an int, its fractional component is lost. When d is converted to
a byte, its fractional component is lost, and the value is reduced modulo 256, which in this
case is 67.

Automatic Type Promotion in Expressions
In addition to assignments, there is another place where certain type conversions may occur:
in expressions. To see why, consider the following. In an expression, the precision required
of an intermediate value will sometimes exceed the range of either operand. For example,
examine the following expression:

byte a = 40;
byte b = 50;
byte c = 100;
int d = a * b / c;

The result of the intermediate term a * b easily exceeds the range of either of its byte
operands. To handle this kind of problem, Java automatically promotes each byte, short,
or char operand to int when evaluating an expression. This means that the subexpression a * b
is performed using integers—not bytes. Thus, 2,000, the result of the intermediate expression,
50 * 40, is legal even though a and b are both specified as type byte.

As useful as the automatic promotions are, they can cause confusing compile-time errors.
For example, this seemingly correct code causes a problem:

byte b = 50;
b = b * 2; // Error! Cannot assign an int to a byte!

The code is attempting to store 50 * 2, a perfectly valid byte value, back into a byte variable.
However, because the operands were automatically promoted to int when the expression was
evaluated, the result has also been promoted to int. Thus, the result of the expression is now
of type int, which cannot be assigned to a byte without the use of a cast. This is true even if,
as in this particular case, the value being assigned would still fit in the target type.

In cases where you understand the consequences of overflow, you should use an explicit
cast, such as

byte b = 50;
b = (byte)(b * 2);

which yields the correct value of 100.

The Type Promotion Rules
Java defines several type promotion rules that apply to expressions. They are as follows: First,
all byte, short, and char values are promoted to int, as just described. Then, if one operand
is a long, the whole expression is promoted to long. If one operand is a float, the entire
expression is promoted to float. If any of the operands is double, the result is double.

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 47

The following program demonstrates how each value in the expression gets promoted
to match the second argument to each binary operator:

class Promote {
public static void main(String args[]) {
byte b = 42;
char c = 'a';
short s = 1024;
int i = 50000;
float f = 5.67f;
double d = .1234;
double result = (f * b) + (i / c) - (d * s);
System.out.println((f * b) + " + " + (i / c) + " - " + (d * s));
System.out.println("result = " + result);

}
}

Let’s look closely at the type promotions that occur in this line from the program:

double result = (f * b) + (i / c) - (d * s);

In the first subexpression, f * b, b is promoted to a float and the result of the subexpression
is float. Next, in the subexpression i / c, c is promoted to int, and the result is of type int. Then,
in d * s, the value of s is promoted to double, and the type of the subexpression is double.
Finally, these three intermediate values, float, int, and double, are considered. The outcome
of float plus an int is a float. Then the resultant float minus the last double is promoted to
double, which is the type for the final result of the expression.

Arrays
An array is a group of like-typed variables that are referred to by a common name. Arrays of
any type can be created and may have one or more dimensions. A specific element in an array
is accessed by its index. Arrays offer a convenient means of grouping related information.

NOTEOTE If you are familiar with C/C++, be careful. Arrays in Java work differently than they do in
those languages.

One-Dimensional Arrays
A one-dimensional array is, essentially, a list of like-typed variables. To create an array, you first
must create an array variable of the desired type. The general form of a one-dimensional
array declaration is

type var-name[];

Here, type declares the base type of the array. The base type determines the data type of each
element that comprises the array. Thus, the base type for the array determines what type of
data the array will hold. For example, the following declares an array named month_days
with the type “array of int”:

int month_days[];

48 P a r t I : T h e J a v a L a n g u a g e

Although this declaration establishes the fact that month_days is an array variable, no
array actually exists. In fact, the value of month_days is set to null, which represents an array
with no value. To link month_days with an actual, physical array of integers, you must allocate
one using new and assign it to month_days. new is a special operator that allocates memory.

You will look more closely at new in a later chapter, but you need to use it now to allocate
memory for arrays. The general form of new as it applies to one-dimensional arrays appears
as follows:

array-var = new type[size];

Here, type specifies the type of data being allocated, size specifies the number of elements in
the array, and array-var is the array variable that is linked to the array. That is, to use new to
allocate an array, you must specify the type and number of elements to allocate. The elements
in the array allocated by new will automatically be initialized to zero. This example allocates
a 12-element array of integers and links them to month_days.

month_days = new int[12];

After this statement executes, month_days will refer to an array of 12 integers. Further, all
elements in the array will be initialized to zero.

Let’s review: Obtaining an array is a two-step process. First, you must declare a variable of
the desired array type. Second, you must allocate the memory that will hold the array, using
new, and assign it to the array variable. Thus, in Java all arrays are dynamically allocated. If
the concept of dynamic allocation is unfamiliar to you, don’t worry. It will be described at
length later in this book.

Once you have allocated an array, you can access a specific element in the array by
specifying its index within square brackets. All array indexes start at zero. For example,
this statement assigns the value 28 to the second element of month_days.

month_days[1] = 28;

The next line displays the value stored at index 3.

System.out.println(month_days[3]);

Putting together all the pieces, here is a program that creates an array of the number
of days in each month.

// Demonstrate a one-dimensional array.
class Array {
public static void main(String args[]) {
int month_days[];
month_days = new int[12];
month_days[0] = 31;
month_days[1] = 28;
month_days[2] = 31;
month_days[3] = 30;
month_days[4] = 31;
month_days[5] = 30;
month_days[6] = 31;

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 49

50 P a r t I : T h e J a v a L a n g u a g e

month_days[7] = 31;
month_days[8] = 30;
month_days[9] = 31;
month_days[10] = 30;
month_days[11] = 31;
System.out.println("April has " + month_days[3] + " days.");

}
}

When you run this program, it prints the number of days in April. As mentioned, Java array
indexes start with zero, so the number of days in April is month_days[3] or 30.

It is possible to combine the declaration of the array variable with the allocation of the
array itself, as shown here:

int month_days[] = new int[12];

This is the way that you will normally see it done in professionally written Java programs.
Arrays can be initialized when they are declared. The process is much the same as that

used to initialize the simple types. An array initializer is a list of comma-separated expressions
surrounded by curly braces. The commas separate the values of the array elements. The array
will automatically be created large enough to hold the number of elements you specify in the
array initializer. There is no need to use new. For example, to store the number of days in
each month, the following code creates an initialized array of integers:

// An improved version of the previous program.
class AutoArray {
public static void main(String args[]) {

int month_days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31,
30, 31 };

System.out.println("April has " + month_days[3] + " days.");
}

}

When you run this program, you see the same output as that generated by the previous version.
Java strictly checks to make sure you do not accidentally try to store or reference values

outside of the range of the array. The Java run-time system will check to be sure that all array
indexes are in the correct range. For example, the run-time system will check the value of
each index into month_days to make sure that it is between 0 and 11 inclusive. If you try to
access elements outside the range of the array (negative numbers or numbers greater than
the length of the array), you will cause a run-time error.

Here is one more example that uses a one-dimensional array. It finds the average of a set
of numbers.

// Average an array of values.
class Average {
public static void main(String args[]) {
double nums[] = {10.1, 11.2, 12.3, 13.4, 14.5};
double result = 0;
int i;

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 51

for(i=0; i<5; i++)
result = result + nums[i];

System.out.println("Average is " + result / 5);
}

}

Multidimensional Arrays
In Java, multidimensional arrays are actually arrays of arrays. These, as you might expect, look
and act like regular multidimensional arrays. However, as you will see, there are a couple
of subtle differences. To declare a multidimensional array variable, specify each additional
index using another set of square brackets. For example, the following declares a two-
dimensional array variable called twoD.

int twoD[][] = new int[4][5];

This allocates a 4 by 5 array and assigns it to twoD. Internally this matrix is implemented as
an array of arrays of int. Conceptually, this array will look like the one shown in Figure 3-1.

The following program numbers each element in the array from left to right, top to
bottom, and then displays these values:

// Demonstrate a two-dimensional array.
class TwoDArray {
public static void main(String args[]) {
int twoD[][]= new int[4][5];
int i, j, k = 0;

for(i=0; i<4; i++)
for(j=0; j<5; j++) {
twoD[i][j] = k;
k++;

}

for(i=0; i<4; i++) {
for(j=0; j<5; j++)
System.out.print(twoD[i][j] + " ");

System.out.println();
}

}
}

This program generates the following output:

0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19

When you allocate memory for a multidimensional array, you need only specify the
memory for the first (leftmost) dimension. You can allocate the remaining dimensions

52 P a r t I : T h e J a v a L a n g u a g e

separately. For example, this following code allocates memory for the first dimension of
twoD when it is declared. It allocates the second dimension manually.

int twoD[][] = new int[4][];
twoD[0] = new int[5];
twoD[1] = new int[5];
twoD[2] = new int[5];
twoD[3] = new int[5];

While there is no advantage to individually allocating the second dimension arrays in
this situation, there may be in others. For example, when you allocate dimensions manually,
you do not need to allocate the same number of elements for each dimension. As stated earlier,
since multidimensional arrays are actually arrays of arrays, the length of each array is under
your control. For example, the following program creates a two-dimensional array in which
the sizes of the second dimension are unequal.

// Manually allocate differing size second dimensions.
class TwoDAgain {
public static void main(String args[]) {
int twoD[][] = new int[4][];
twoD[0] = new int[1];
twoD[1] = new int[2];
twoD[2] = new int[3];
twoD[3] = new int[4];

int i, j, k = 0;

for(i=0; i<4; i++)
for(j=0; j<i+1; j++) {

FIGURE 3-1 A conceptual view of a 4 by 5, two-dimensional array

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 53

twoD[i][j] = k;
k++;

}

for(i=0; i<4; i++) {
for(j=0; j<i+1; j++)
System.out.print(twoD[i][j] + " ");

System.out.println();
}

}
}

This program generates the following output:

0
1 2
3 4 5
6 7 8 9

The array created by this program looks like this:

The use of uneven (or, irregular) multidimensional arrays may not be appropriate for many
applications, because it runs contrary to what people expect to find when a multidimensional
array is encountered. However, irregular arrays can be used effectively in some situations. For
example, if you need a very large two-dimensional array that is sparsely populated (that is,
one in which not all of the elements will be used), then an irregular array might be a perfect
solution.

It is possible to initialize multidimensional arrays. To do so, simply enclose each dimension’s
initializer within its own set of curly braces. The following program creates a matrix where
each element contains the product of the row and column indexes. Also notice that you can
use expressions as well as literal values inside of array initializers.

// Initialize a two-dimensional array.
class Matrix {
public static void main(String args[]) {
double m[][] = {
{ 0*0, 1*0, 2*0, 3*0 },
{ 0*1, 1*1, 2*1, 3*1 },
{ 0*2, 1*2, 2*2, 3*2 },

54 P a r t I : T h e J a v a L a n g u a g e

{ 0*3, 1*3, 2*3, 3*3 }
};
int i, j;

for(i=0; i<4; i++) {
for(j=0; j<4; j++)
System.out.print(m[i][j] + " ");

System.out.println();
}

}
}

When you run this program, you will get the following output:

0.0 0.0 0.0 0.0
0.0 1.0 2.0 3.0
0.0 2.0 4.0 6.0
0.0 3.0 6.0 9.0

As you can see, each row in the array is initialized as specified in the initialization lists.
Let’s look at one more example that uses a multidimensional array. The following program

creates a 3 by 4 by 5, three-dimensional array. It then loads each element with the product
of its indexes. Finally, it displays these products.

// Demonstrate a three-dimensional array.
class ThreeDMatrix {
public static void main(String args[]) {
int threeD[][][] = new int[3][4][5];
int i, j, k;

for(i=0; i<3; i++)
for(j=0; j<4; j++)
for(k=0; k<5; k++)
threeD[i][j][k] = i * j * k;

for(i=0; i<3; i++) {
for(j=0; j<4; j++) {
for(k=0; k<5; k++)
System.out.print(threeD[i][j][k] + " ");

System.out.println();
}
System.out.println();

}
}

}

This program generates the following output:

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 55

0 0 0 0 0
0 1 2 3 4
0 2 4 6 8
0 3 6 9 12

0 0 0 0 0
0 2 4 6 8
0 4 8 12 16
0 6 12 18 24

Alternative Array Declaration Syntax
There is a second form that may be used to declare an array:

type[] var-name;

Here, the square brackets follow the type specifier, and not the name of the array variable.
For example, the following two declarations are equivalent:

int al[] = new int[3];
int[] a2 = new int[3];

The following declarations are also equivalent:

char twod1[][] = new char[3][4];
char[][] twod2 = new char[3][4];

This alternative declaration form offers convenience when declaring several arrays at the
same time. For example,

int[] nums, nums2, nums3; // create three arrays

creates three array variables of type int. It is the same as writing

int nums[], nums2[], nums3[]; // create three arrays

The alternative declaration form is also useful when specifying an array as a return type for
a method. Both forms are used in this book.

A Few Words About Strings
As you may have noticed, in the preceding discussion of data types and arrays there has been
no mention of strings or a string data type. This is not because Java does not support such a
type—it does. It is just that Java’s string type, called String, is not a simple type. Nor is it simply
an array of characters. Rather, String defines an object, and a full description of it requires an
understanding of several object-related features. As such, it will be covered later in this book,
after objects are described. However, so that you can use simple strings in example programs,
the following brief introduction is in order.

The String type is used to declare string variables. You can also declare arrays of strings.
A quoted string constant can be assigned to a String variable. A variable of type String can

be assigned to another variable of type String. You can use an object of type String as an
argument to println(). For example, consider the following fragment:

String str = "this is a test";
System.out.println(str);

Here, str is an object of type String. It is assigned the string “this is a test”. This string is
displayed by the println() statement.

As you will see later, String objects have many special features and attributes that
make them quite powerful and easy to use. However, for the next few chapters, you will
be using them only in their simplest form.

A Note to C/C++ Programmers About Pointers
If you are an experienced C/C++ programmer, then you know that these languages provide
support for pointers. However, no mention of pointers has been made in this chapter. The
reason for this is simple: Java does not support or allow pointers. (Or more properly, Java
does not support pointers that can be accessed and/or modified by the programmer.) Java
cannot allow pointers, because doing so would allow Java programs to breach the firewall
between the Java execution environment and the host computer. (Remember, a pointer can
be given any address in memory—even addresses that might be outside the Java run-time
system.) Since C/C++ make extensive use of pointers, you might be thinking that their loss
is a significant disadvantage to Java. However, this is not true. Java is designed in such a way
that as long as you stay within the confines of the execution environment, you will never need
to use a pointer, nor would there be any benefit in using one.

56 P a r t I : T h e J a v a L a n g u a g e

	Part I: The Java Language
	2 An Overview of Java
	Object-Oriented Programming
	A First Simple Program
	A Second Short Program
	Two Control Statements
	Using Blocks of Code
	Lexical Issues
	The Java Class Libraries

	3 Data Types, Variables, and Arrays
	Java Is a Strongly Typed Language
	The Primitive Types
	Integers
	Floating-Point Types
	Characters
	Booleans
	A Closer Look at Literals
	Variables
	Type Conversion and Casting
	Automatic Type Promotion in Expressions
	Arrays
	A Few Words About Strings
	A Note to C/C++ Programmers About Pointers

