

Acknowledgements to

Donald Hearn & Pauline Baker: Computer Graphics with OpenGL

Version,3rd / 4th Edition, Pearson Education,2011

Edward Angel: Interactive Computer Graphics- A Top Down approach

with OpenGL, 5th edition. Pearson Education, 2008

M M Raiker, Computer Graphics using OpenGL, Filip learning/Elsevier

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 1

 INPUT AND INTERACTION

Interaction; Input devices;

Clients and servers; Display lists;

Display lists and modeling; Programming

event-driven input; Menus; Picking;

A simple CAD program;

Building interactive models;

Animating interactive programs;

Design of interactive programs;

Logic operations.

INTERACTION

 In the field of computer graphics, interaction refers to the manner in

which the application program communicates with input and output

devices of the system.

 For e.g. Image varying in response to the input from the user.

 OpenGL doesn’t directly support interaction in order to maintain

portability. However, OpenGL provides the GLUT library. This library

supports interaction with the keyboard, mouse etc and hence enables

interaction. The GLUT library is compatible with many operating systems

such as X windows, Current Windows, Mac OS etc and hence indirectly

ensures the portability of OpenGL.

INPUT DEVICES

 Input devices are the devices which provide input to the computer

graphics application program. Input devices can be categorized in two

ways:

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 2

1. Physical input devices

2. Logical input devices

PHYSICAL INPUT DEVICES

 Physical input devices are the input devices which has the particular

hardware architecture.

 The two major categories in physical input devices are:

 Key board devices like standard keyboard, flexible keyboard, handheld

keyboard etc. These are used to provide character input like letters,

numbers, symbols etc.

 Pointing devices like mouse, track ball, light pen etc. These are used

to specify the position on the computer screen.

1. KEYBOARD: It is a general keyboard which has set of characters. We

make use of ASCII value to represent the character i.e. it interacts with the

programmer by passing the ASCII value of key pressed by programmer. Input

can be given either single character of array of characters to the program.

2. MOUSE AND TRACKBALL: These are pointing devices used to specify the

position. Mouse and trackball interacts with the application program by

passing the position of the clicked button. Both these devices are similar in use

and construction. In these devices, the motion of the ball is converted to signal

sent back to the computer by pair of encoders inside the device. These

encoders measure motion in 2-orthogonal directions.

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 3

The values passed by the pointing devices can be considered as positions and

converted to a 2-D location in either screen or world co-ordinates. Thus, as a

mouse moves across a surface, the integrals of the velocities yield x,y values

that can be converted to indicate the position for a cursor on the screen as

shown below:

These devices are relative positioning devices because changes in the

position of the ball yield a position in the user program.

3. DATA TABLETS: It provides absolute positioning. It has rows and

columns of wires embedded under its surface. The position of the stylus is

determined through electromagnetic interactions between signals travelling

through the wires and sensors in the stylus.

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 4

4. LIGHT PEN: It consists of light-sensing device such as “photocell”. The

light pen is held at the front of the CRT. When the electron beam strikes the

phosphor, the light is emitted from the CRT. If it exceeds the threshold then

light sensing device of the light pen sends a signal to the computer specifying

the position.

The major disadvantage is that it has the difficulty in obtaining a position that

corresponds to a dark area of the screen

5. JOYSTICK: The motion of the stick in two orthogonal directions is

encoded, interpreted as two velocities and integrated to indentify a screen

location. The integration implies that if the stick is left in its resting position,

there is no change in cursor position. The faster the stick is moved from the

resting position; the faster the screen location changes. Thus, joystick is

variable sensitivity device.

The advantage is that it is designed using mechanical elements such as springs

and dampers which offer resistance to the user while pushing it. Such

mechanical feel is suitable for application such as the flight simulators, game

controllers etc.

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 5

6. SPACE BALL: It is a 3-Dimensional input device which looks like a

joystick with a ball on the end of the stick.

Stick doesn’t move rather pressure sensors in the ball measure the forces

applied by the user. The space ball can measure not only three direct forces (up-

down, front-back, left-right) but also three independent twists. So totally device

measures six independent values and thus has six degree of freedom.

Other 3-Dimensional devices such as laser scanners, measure 3-D positions

directly. Numerous tracking systems used in virtual reality applications sense

the position of the user and so on.

LOGICAL INPUT DEVICES

 These are characterized by its high-level interface with the application

program rather than by its physical characteristics.

 Consider the following fragment of C code:

int x;

scanf(“%d”,&x);

printf(“%d”,x);

 The above code reads and then writes an integer. Although we run this

program on workstation providing input from keyboard and seeing

output on the display screen, the use of scanf() and printf() requires no

knowledge of the properties of physical devices such as keyboard codes

or resolution of the display.

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 6

 These are logical functions that are defined by how they handle input or

output character strings from the perspective of C program.

 From logical devices perspective inputs are from inside the application

program. The two major characteristics describe the logical behavior of

input devices are as follows:

 The measurements that the device returns to the user program

 The time when the device returns those measurements

API defines six classes of logical input devices which are given below:

1. STRING: A string device is a logical device that provides the ASCII values

of input characters to the user program. This logical device is usually

implemented by means of physical keyboard.

2. LOCATOR: A locator device provides a position in world coordinates to

the user program. It is usually implemented by means of pointing devices such

as mouse or track ball.

3. PICK: A pick device returns the identifier of an object on the display to

the user program. It is usually implemented with the same physical device as

the locator but has a separate software interface to the user program. In

OpenGL, we can use a process of selection to accomplish picking.

4. CHOICE: A choice device allows the user to select one of a discrete

number of options. In OpenGL, we can use various widgets provided by the

window system. A widget is a graphical interactive component provided by the

window system or a toolkit. The Widgets include menus, scrollbars and

graphical buttons. For example, a menu with n selections acts as a choice

device, allowing user to select one of ‘n’ alternatives.

5. VALUATORS: They provide analog input to the user program on some

graphical systems; there are boxes or dials to provide value.

6. STROKE: A stroke device returns array of locations. Example, pushing

down a mouse button starts the transfer of data into specified array and

releasing of button ends this transfer.

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 7

INPUT MODES

Input devices can provide input to an application program in terms of two

entities:

1. Measure of a device is what the device returns to the application

program.

2. Trigger of a device is a physical input on the device with which the user

can send signal to the computer

Example 1: The measure of a keyboard is a single character or array of

characters where as the trigger is the enter key.

Example 2: The measure of a mouse is the position of the cursor whereas the

trigger is when the mouse button is pressed.

The application program can obtain the measure and trigger in three distinct

modes:

1. REQUEST MODE: In this mode, measure of the device is not returned to

the program until the device is triggered.

 For example, consider a typical C program which reads a character input

using scanf(). When the program needs the input, it halts when it

encounters the scanf() statement and waits while user type characters at

the terminal. The data is placed in a keyboard buffer (measure) whose

contents are returned to the program only after enter key (trigger) is

pressed.

 Another example, consider a logical device such as locator, we can move

out pointing device to the desired location and then trigger the device

with its button, the trigger will cause the location to be returned to the

application program.

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 8

2. SAMPLE MODE: In this mode, input is immediate. As soon as the

function call in the user program is executed, the measure is returned. Hence

no trigger is needed.

Both request and sample modes are useful for the situation if and only if there

is a single input device from which the input is to be taken. However, in case of

flight simulators or computer games variety of input devices are used and these

mode cannot be used. Thus, event mode is used.

3. EVENT MODE: This mode can handle the multiple interactions.

 Suppose that we are in an environment with multiple input devices, each

with its own trigger and each running a measure process.

 Whenever a device is triggered, an event is generated.The device measure

including the identifier for the device is placed in an event queue.

 If the queue is empty, then the application program will wait until an

event occurs. If there is an event in a queue, the program can look at the

first event type and then decide what to do.

Another approach is to associate a function when an event occurs, which is

called as “call back.”

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 9

CLIENT AND SERVER

 The computer graphics architecture is based on the client-server model.

I.e., if computer graphics is to be useful for variety of real applications, it must

function well in a world of distributed computing and network.

 In this architecture the building blocks are entities called as “servers”

perform the tasks requested by the “client”

 Servers and clients can be distributed over a network or can be present

within a single system. Today most of the computing is done in the form

of distributed based and network based as shown below:

 Most popular examples of servers are print servers – which allow using

high speed printer devices among multiple users. File servers – allow

users to share files and programs.

 Users or clients will make use of these services with the help of user

programs or client programs. The OpenGL application programs are the client

programs that use the services provided by the graphics server.

 Even if we have single user isolated system, the interaction would be

configured as client-server model.

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 10

DISPLAY LISTS

The original architecture of a graphical system was based on a general-purpose

computer connected to a display. The architecture is shown in the next page.

At that time, the disadvantage is that system was slow and expensive.

Therefore, a special purpose computer is build which is known as “display

processor”.

The user program is processed by the host computer which results a compiled

list of instruction that was then sent to the display processor, where the

instruction are stored in a display memory called as “display file” or “display

list”. Display processor executes its display list contents repeatedly at a

sufficient high rate to produce flicker-free image.

There are two modes in which objects can be drawn on the screen:

1. IMMEDIATE MODE: This mode sends the complete description of the

object which needs to be drawn to the graphics server and no data can be

retained. i.e., to redisplay the same object, the program must re-send the

information. The information includes vertices, attributes, primitive types,

viewing details.

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 11

2. RETAINED MODE: This mode is offered by the display lists. The object is

defined once and its description is stored in a display list which is at the server

side and redisplay of the object can be done by a simple function call issued by

the client to the server.

NOTE: The main disadvantage of using display list is it requires memory at the

server architecture and server efficiency decreases if the data is changing

regularly.

DEFINITION AND EXECUTION OF DISPLAY LISTS

 Display lists are defined similarly to the geometric primitives. i.e.,

glNewList() at the beginning and glEndList() at the end is used to define a

display list.

 Each display list must have a unique identifier – an integer that is

usually a macro defined in the C program by means of #define directive

to an appropriate name for the object in the list. For example, the

following code defines red box:

 The flag GL_COMPILE indicates the system to send the list to the server

but not to display its contents. If we want an immediate display of the

contents while the list is being constructed then

GL_COMPILE_AND_EXECUTE flag is set.

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 12

 Each time if the client wishes to redraw the box on the display, it need

not resend the entire description. Rather, it can call the following

function:

glCallList(Box)

 The Box can be made to appear at different places on the monitor by

changing the projection matrix as shown below:

 OpenGL provides an API to retain the information by using stack – It is a

data structure in which the item placed most recently is removed first

[LIFO].

 We can save the present values of the attributes and the matrices by

pushing them into the stack, usually the below function calls are placed at

the beginning of the display list,

glPushAttrib(GL_ALL_ATTRIB_BITS);

glPushMatrix();

 We can retrieve these values by popping them from the stack, usually the

below function calls are placed at the end of the display list,

glPopAttrib();

glPopMatrix();

 We can create multiple lists with consecutive identifiers more easily

using:

glGenLists (number)

 We can display multiple display lists by using single funciton call:

glCallLists()

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 13

TEXT AND DISPLAY LISTS

 There are two types of text i.e., raster text and stroke text which can be

generated.

 For example, let us consider a raster text character is to be drawn of size

8x13 pattern of bits. It takes 13 bytes to store each character.

 If we define a stroke font using only line segments, each character

requires a different number of lines.

 From the above figure we can observe to draw letter ‘I’ is fairly simple,

whereas drawing ‘O’ requires many line segments to get sufficiently

smooth.

 So, on the average we need more than 13 bytes per character to

represent stroke font. The performance of the graphics system will be

degraded for the applications that require large quantity of text.

 A more efficient strategy is to define the font once, using a display list for

each char and then store in the server. We define a function OurFont()

which will draw any ASCII character stored in variable ‘c’.

 The function may have the form

 For the character ‘O’ the code sequence is of the form as shown below:

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 14

 The above code approximates the circle with 12 quadrilaterals.

 When we want to generate a 256-character set, the required code using

OurFont() is as follows

base = glGenLists(256);

for(i=0;i<256;i++) {

glNewList(base+i, GL_COMPILE);

OurFont(i);

glEndList();

}

 To display char from the list, offset is set by using glListBase(base)

function. The drawing of a string is accomplished in the server by the

following function, char *text_string;

glCallLists((GLint) strlen (text_string), GL_BYTE, text_string);

 The glCallLists has three arguments: (1) indicates number of lists to be

executed (2) indicates the type (3) is a pointer to an array of a type given

by second argument.

FONTS IN GLUT

 GLUT provides raster and stroke fonts; they do not make use of display

lists.

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 15

 glutStrokeCharacter(GLUT_STROKE_MONO_ROMAN, int character);

provides proportionally space characters. Position of a character is done

by using a translation before the character function is called.

 glutBitmapCharacter(GLUT_BITMAP_8_BY_13, int character);

produces the bitmap characters of size 8x13.

DISPLAY LIST AND MODELING

 Display list can call other display list. Therefore, they are powerful tools

for building hierarchical models that can incorporate relationships

among parts of a model.

 Consider a simple face modeling system that can produce images as

follows:

 Each face has two identical eyes, two identical ears, one nose, one mouth

& an outline. We can specify these parts through display lists which is

given below:

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 16

PROGRAMMING EVENT DRIVEN INPUT

 The various events can be recognized by the window system and call

back function can be called for each of these events.

USING POINTING DEVICES

 Pointing devices like mouse, trackball, data tablet allow programmer to

indicate a position on the display.

 There are two types of event associated with pointing device, which is

conventionally assumed to be mouse but could be trackball or data

tablet also.

1. MOVE EVENT – is generated when the mouse is move with one of the

button being pressed. If the mouse is moved without a button being

pressed, this event is called as “passive move event”.

2. MOUSE EVENT – is generated when one of the mouse buttons is either

pressed or released.

 The information returned to the application program includes button

that generated the event, state of the button after event (up or down),

position (x,y) of the cursor. Programming a mouse event involves two

steps:

1. The mouse callback function must be defined in the form: void

myMouse(int button, int state, int x, int y) is written by the

programmer.

For example,

void myMouse(int button, int state, int x, int y)

{

if(button==GLUT_LEFT_BUTTON && state == GLUT_DOWN)

exit(0);

}

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 17

The above code ensures whenever the left mouse button is pressed down,

execution of the program gets terminated.

2. Register the defined mouse callback function in the main function, by

means of GLUT function:

glutMouseFunc(myMouse);

Write an OpenGL program to display square when a left button is

pressed and to exit the program if right button is pressed.

#include<stdio.h>

#include<stdlib.h>

#include<GL/glut.h>

int wh=500, ww=500;

float siz=3;

void myinit()

{

glClearColor(1.0,1.0,1.0,1.0);

glViewPort(0,0,w,h)

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(0,(GLdouble) ww, 0, (GLdouble) wh);

glMatrixMode(GL_MODELVIEW);

glColor3f(1,0,0);

}

void drawsq (int x, int y)

{

y=wh-y;

glBegin(GL_POLYGON);

glVertex2f(x+siz, y+siz);

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 18

glVertex2f(x-siz, y+siz);

glVertex2f(x-siz, y-siz);

glVertex2f(x+siz, y-siz);

glEnd();

glFlush();

}

void display()

{

glClear(GL_COLOR_BUFFER_BIT);

}

void myMouse(int button, int state, int x, int y)

{

if(button==GLUT_LEFT_BUTTON && state == GLUT_DOWN)

drawsq(x,y);

if(button==GLUT_RIGHT_BUTTON && state == GLUT_DOWN)

exit(0);

}

void main(int argc, char **argv)

{

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE);

glutInitWindowSize(wh,ww);

glutCreateWindow(“square”);

glutDisplayFunc(display);

glutMouseFunc(myMouse);

myinit();

glutMainLoop();

}

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 19

KEYBOARD EVENTS

 Keyboard devices are input devices which return the ASCII value to the

user program. Keyboard events are generated when the mouse is in the

window and one of the keys is pressed or released.

 GLUT supports following two functions:

 glutKeyboardFunc() is the callback for events generated by pressing a key

 glutKeyboardUpFunc() is the callback for events generated by releasing a

key.

 The information returned to the program includes ASCII value of the key

pressed and the position (x,y) of the cursor when the key was pressed.

Programming keyboard event involves two steps:

1. The keyboard callback function must be defined in the form:

void mykey (unsigned char key, int x, int y)

is written by the application programmer.

For example,

void mykey(unsigned char key, int x, int y)

{

if(key== ‘q’ || key== ‘Q’)

exit(0);

}

The above code ensures when ‘Q’ or ‘q’ key is pressed, the execution of the

program gets terminated.

2. The keyboard callback function must be registered in the main

functionby means of GLUT function:

glutKeyboardFunc(mykey);

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 20

WINDOW EVENTS

 A window event is occurred when the corner of the window is dragged to

new position or size of window is minimized or maximized by using

mouse.

 The information returned to the program includes the height and width

of newly resized window. Programming the window event involves two

steps:

1. Window call back function must be defined in the form:

 void myReshape(GLsizei w, GLsizei h) is written by the application

programmer.

 Let us consider drawing square as an example, the square of same size

must be drawn regardless of window size.

void myReshape(GLsizei w, GLsizei h)

{

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(0,(GLdouble) w, 0, (GLdouble) h);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

glViewPort(0,0,w,h)

/*save new window size in global variables*/

ww=w;

wh=h;

}

2. The window callback function must be registered in the main function,

glutReshapeFunc(myReshape);

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 21

THE DISPLAY AND IDLE CALLBACKS

 Display callback is specified by GLUT using

glutDisplayFunc(myDisplay). It is invoked when GLUT determines that

window should be redisplayed. Re-execution of the display function can

be achieved by using glutPostRedisplay().

 The idle callback is invoked when there are no other events. It is

specified by GLUT using glutIdleFunc(myIdle).

WINDOW MANAGEMENT

 GLUT also supports multiple windows of a given window. We can create a

second top-level window as follows:

id = glutCreateWindow(“second window”);

 The returned integer value allows us to select this window as the current

window.

i.e., glutSetWindow(id);

NOTE: The second window can have different properties from other window by

invoking the glutInitDisplayMode before glutCreateWindow.

MENUS

 Menus are an important feature of any application program. OpenGL

provides a feature called “Pop-up-menus” using which sophisticated

interactive applications can be created.

 Menu creation involves the following steps:

1. Define the actions corresponding to each entry in the menu.

2. Link the menu to a corresponding mouse button.

3. Register a callback function for each entry in the menu.

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 22

 The glutCreateMenu() registers the callback function demo_menu. The

function glutAddMenuEntry() adds the entry in the menu whose name is

pased in first argument and the second argument is the identifier passed

to the callback when the entry is selected.

 GLUT also supports the creation of hierarchical menus which is given

below:

PICKING

 Picking is the logical input operation that allows the user to identify an

object on the display.

 The action of picking uses pointing device but the information returned

to the application program is the identifier of an object not a position.

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 23

 It is difficult to implement picking in modern system because of graphics

pipeline architecture. Therefore, converting from location on the display

to the corresponding primitive is not direct calculation.

 There are at least three ways to deal with this difficulty:

O Selection:

 It involves adjusting the clipping region and viewport such

that we can keep track of which primitives lies in a small

clipping region and are rendered into region near the cursor.

 These primitives are sent into a hit list that can be

examined later by the user program.

O Bounding boxes or extents:

O Usage of back buffer and extra rendering:

 When we use double buffering it has two color buffers: front

and back buffers. The contents present in the front buffer is

displayed, whereas contents in back buffer is not displayed

so we can use back buffer for other than rendering the scene

 Picking can be performed in four steps that are initiated by user defined

pick function in the application:

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 24

O We draw the objects into back buffer with the pick colors.

O We get the position of the mouse using the mouse callback.

O Use glReadPixels() to find the color at the position in the frame

buffer corresponding to the mouse position.

O We search table of colors to find the object corresponds to the color

read.

PICKING AND SELECTION MODE

 The difficulty in implementing the picking is we cannot go backward

directly from the position of the mouse to the primitives.

 OpenGL provides “selection mode” to do picking. The glRenderMode() is

used to choose select mode by passing GL_SELECT value.

 When we enter selection mode and render a scene, each primitive within

the clipping volume generates a message called “hit” that is stored in a

buffer called “name stack”.

 The following functions are used in selection mode:

O void glSelectBuffer(GLsizei n, GLuint *buff) : specifies array

buffer of size ‘n’ in which to place selection data.

O void glInitNames() : initializes the name stack.

O void glPushName(GLuint name) : pushes name on the name

stack.

O void glPopName() : pops the top name from the name stack.

O void glLoadName(GLuint name) : replaces the top of the name

stack with name.

 OpenGL allow us to set clipping volume for picking using gluPickMatrix()

which is applied before gluOrtho2D.

 gluPickMatrix(x,y,w,h,*vp) : creates a projection matrix for picking that

restricts drawing to a w x h area and centered at (x,y) in window

coordinates within the viewport vp.

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 25

(a) There is a normal window and image on the display. We also see the

cursor with small box around it indicating the area in which primitive is

rendered.

(b) It shows window and display after the window has been changed by

gluPickMatrix.

The following code provides the implementation of picking process:

#include<glut.h>

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 26

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 27

void myReshape()

{

glViewPort(0,0,w,h)

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(0,(GLdouble) w, 0, (GLdouble) h);

glMatrixMode(GL_MODELVIEW);

}

void main(int argc, char** argv)

{

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_SINGLE |GLUT_RGB);

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 28

glutInitWindowSize(500,500);

glutInitWindowPosition(100,100);

glutCreateWindow(“picking”);

glutReshapeFunc(myReshape);

glutDisplayFunc(display);

glutMouseFunc(Mouse);

glClearColor(0.0,0.0,0.0,0.0);

glutMainLoop();

}

A SIMPLE CAD PROGRAM

Applications like interactive painting, design of mechanical parts and creating

characters for a game are all examples of computer-aided design (CAD). CAD

programs allow –

 The use of multiple windows and viewports to display a variety of

information.

 The ability to create, delete and save user-defined objects.

 Multiple modes of operations employing menus, keyboard and mouse.

For example, consider the polygon-modeling CAD program which supports

following operations:

1. Creation of polygons

2. Deletion of polygons

3. Selection and movement of polygons

Refer appendix A.5 polygon modeling program for the entire code from the

prescribed text (Interactive Computer Graphics by Edward Angel 5th edition)

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 29

BUILDING INTERACTIVE MODELS

 Using OpenGL, we can develop a program where we can do insertion,

manipulation, deletion etc and we can also build a program which is

quite interactive by using the concept of instancing and display lists.

 Consider an interior design application which has items like

chairs, tables and other house hold items. These items are called the

basic building blocks of the application. Each occurrence of these basic

items is referred to as “instance”.

 Whenever the instances of building blocks are created by the user using

the application program, the object (instance) is stored into an array

called as “instance table”. We reserve the type 0 to specify that the

object no longer exists (i.e., for deletion purpose)

 Now suppose that the user has indicated through a menu that he wishes

to eliminate an object and use the mouse to locate the object.

O The program can now search the instance table till it finds the

object as specified in the bounding box and then set its type to 0.

O Hence, next time when the display process goes through the

instance table, the object would not be displayed and thereby it

appears that object has been deleted.

 Although the above strategy works fine, a better data structure to

implement the instance table is using linked lists instead of arrays.

ANIMATING INTERACTIVE PROGRAMS

 Using OpenGl, the programmer can design interactive programs.

Programs in which objects are not static rather they appear to be moving

or changing is considered as “Interactive programs”.

 Consider the following diagram:

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 30

 Consider a 2D point p(x,y) such that x = cos , y= sin . This point would

lie on a unit circle regardless of the value of . Thus, if we connect the

above given four points we get a square which has its center as the

origin. The above square can be displayed as shown below:

 Suppose that we change the value of as the program is running, the

square appears to rotating about its origin. If the value of is to be

changed by a fixed amount whenever nothing else is happening then an

idle callback function must be designed as shown below:

 The above idle callback function must be registered in the main function:

glutIdleFunc(idle);

 Suppose that we want to turn off and turn on the rotation feature then

we can write a mouse callback function as shown below:

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 31

 The above mouse callback function starts the rotation of the cube when

the left mouse button and when the middle button is pressed it will halt

the rotation.

 The above mouse callback function must be registered in the main

function as follow:

glutMouseFunc(mouse);

 However, when the above program is executed using single buffering

scheme then flickering effect would be noticed on the display. This

problem can be overcome using the concept of double buffering.

DOUBLE BUFFERING:

 Double buffering is a must in such animations where the primitives,

attributes and viewing conditions are changing continuously.

 Double buffer consists of two buffers: front buffers and back buffers.

Double buffering mode can be initialized:

glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);

 Further in the display function, we have to include: glutSwapBuffers()

to exchange the contents of front and the back buffer.

 Using this approach, the problems associated with flicker can be

eliminated.

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 32

USING TIMER:

 To understand the usage of timer, consider cube rotation program and

its execution is done by using fast GPU (modern GPUs can render tens of

millions of primitives per second) then cube will be rendered thousands

of time per second and we will see the blur on the display.

 Therefore, GLUT provides the following timer function:

glutTimerFunc(int delay, void(*timer_func (int), int value)

 Execution of this function starts timer in the event loop that delays for

delay milliseconds. When timer has counted down, timer_func is executed

the value parameter allow user to pass variable into the timer call back.

DESIGN OF INTERACTIVE PROGRAMS

The following are the features of most interactive program:

 A smooth display, showing neither flicker nor any artifacts of the refresh

process.

 A variety of interactive devices on the display

 A variety of methods for entering and displaying information

 An easy to use interface that does not require substantial effort to learn

 Feedback to the user

 Tolerance for user errors

 A design that incorporates consideration of both the visual and motor

properties of the human.

TOOLKITS, WIDGETS AND FRAME BUFFER:

The following two examples illustrate the limitations of geometric rendering.

1. Pop-up menus: When menu callback is invoked, the menu appears over

whatever was on the display. After we make our selection, the menu

disappears and screen is restored to its previous state.

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 33

2. Rubberbanding: It is a technique used to define the elastic nature of

pointing device to draw primitives.

 Consider paint application, if we want to draw a line, we indicate only

two end points of our desired line segment. i.e., after locating first point,

as we move the mouse, a line segment is drawn automatically [is updated

on each refresh] from first location to present position of mouse.

 Rubberbanding begin when mouse button is pressed and continue until

button is released at that time final line segment is drawn.

 We cannot implement this sequence of operations using only what we

have presented so for. We will explore it in next chapters.

LOGIC OPERATIONS

Two types of functions that define writing modes are:

1. Replacement mode 2. Exclusive OR (XOR)

 When program specifies about visible primitive then OpenGL renders it

into set of color pixels and stores it in the present drawing buffer.

 In case of default mode, consider we start with a color buffer then

has been cleared to black. Later we draw a blue color rectangle of size 10

x10 pixels then 100 blue pixels are copied into the color buffer, replacing

100 black pixels. Therefore, this mode is called as “copy or replacement

mode”.

 Consider the below model, where we are writing single pixel into color

buffer.

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 34

 The pixel that we want to write is called as “source pixel”.

 The pixel in the drawing buffer which gets replaced by source pixel is

called as “destination pixel”.

 In Exclusive-OR or (XOR) mode, corresponding bits in each pixel are

combing using XOR logical operation.

 If s and d are corresponding bits in the source and destination pixels, we

can denote the new destination bit as d’. d’ = d s

 One special property of XOR operation is if we apply it twice, it returns to

the original state, it returns to the original state. So, if we draw some thing in

XOR mode, we can erase it by drawing it again.

d = (d s) s

 OpenGL supports all 16 logic modes, copy mode (GL_COPY) is the

default. To change mode, we must enable logic operation,

glEnable(GL_COLOR_LOGIC_OP) and then it can change to XOR mode

glLogicOp(GL_XOR)

DRAWING ERASABLE LINES

One way to draw erasable lines is given below:

 Mouse is used to get first end point and store this in object coordinates.

 Again mouse is used to get second point and draw a line segment in XOR

mode.

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 35

 Here in the above code, copy mode is used to switch back in order to

draw other objects in normal mode.

 If we enter another point with mouse, we first draw line in XOR mode

from 1st point to 2nd point and draw second line using 1st point to

current point is as follows:

Final form of code can be written as shown below:

In this example, we draw rectangle using same concept and the code for

callback function are given below:

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 36

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 37

 For the first time, we draw a single rectangle in XOR mode.

 After that each time that we get vertex, we first erase the existing

rectangle by redrawing new rectangle using new vertex.

 Finally, when mouse button is released the mouse callback is executed

again which performs final erase and draw and go to replacement mode.

XOR AND COLOR

 Consider we would like to draw blue color line where 24 bit RGB values

(00000000, 00000000, 11111111).

 Suppose the screen is clear to write (11111111, 11111111, 11111111)

then when we draw blue line using XOR mode, then the resultant line

would appear in yellow color (11111111, 11111111, 00000000) because

XOR operation is applied bit-wise.

 This leads to form annoying visual effects.

 Therefore, we should use copy mode while drawing final output to get it

in required color.

CURSORS AND OVERLAY PLANES

 Rubberbanding and cursors can place a significant burden on graphics

system as they require the display to be updated constantly.

 Although XOR mode simplifies the process, it requires the system to read

present destination pixels before computing new destination pixels.

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 38

 Alternative is to provide hardware support by providing extra bits in the

color buffer by adding “overlay planes”.

Therefore, typical color buffer may have 8 bits for each Red, green and blue and

one red, one green and one blue overlay plane. i.e., each color will be having its

own overlay plane then those values will be updated to color buffer.

Module 5 ***SAI RAM*** Input and Interaction

Mr. ABHILASH D C, Dept., of CSE 39

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 1

 Curves:

Curved surfaces

Quadric surfaces

OpenGL quadric surfaces and cubic surface functions

Bezier spline curves

Bezier surfaces

Opengl curve functions

Corresponding opengl functions

Curved surfaces

 Sometimes it is required to generate curved objects instead of polygons, for the curved

objects the equation can be expressed either in parametric form or non parametric form.

Curves and surfaces can be described by parameters

 Parametric form:

 When the object description is given in terms of its dimensionality parameter, the

description is termed as parametric representation.

 A curve in the plane has the form C(t) = (x(t), y(t)), and a curve in space has the

form C(t) = (x(t), y(t), z(t)).

 The functions x(t), y(t) and z(t) are called the coordinates functions.

 The image of C(t) is called the trace of C, and C(t) is called a parametrization of C

 A parametric curve defined by polynomial coordinate function is called a

polynomial curve.

 The degree of a polynomial curve is the highest power of the variable occurring in

any coordinate function.

 Non parametric form:

 When the object descriptions are directly in terms of coordinates of reference

frame, then the representation is termed as non parametric.

 Example: a surface can be described in non parametric form as:

f1(x,y,z)=0 or z=f2(x,y)

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 2

 The coordinates (x, y) of points of a no parametric explicit planner curve satisfy y

= f(x) or x = g(y).

 Such curve have the parametric form C(t) = (t, f(t)) or C(t) = (g(t), t).

Quadric surfaces

 A frequently used class of objects is the quadric surfaces, which are described with

second - degree equations (quadratics).

 They include spheres, ellipsoids, tori, paraboloids, and hyperboloids.

1. Sphere

 A spherical surface with radius r centered on the coordinate origin is defined as the set of

points (x, y, z) that satisfy the equation

x2 + y2 + z2 = r 2

 We can also describe the spherical surface in parametric form, using latitude and

longitude angles as shown in figure

x = r cos φ cos θ, − π/2 ≤ φ ≤ π/2

y = r cos φ sin θ, − π ≤ θ ≤ π

z = r sin φ

 Alternatively, we could write the parametric

equations using standard spherical coordinates,

where angle φ is specified as the colatitudes

as shown in figure

2. Ellipsoid

 An ellipsoidal surface can be described as an extension of a spherical surface where the

radii in three mutually perpendicular directions can have different values

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 3

 The Cartesian representation for points over the surface of an ellipsoid centered on the

origin is

 And a parametric representation for the ellipsoid in terms of the latitude angle φ and the

longitude angle θ

x = rx cos φ cos θ, − π/2 ≤ φ ≤ π/2

y = ry cos φ sin θ, − π ≤ θ ≤ π

z = rz sin φ

3. Torus

 A torus is a doughnut-shaped object, as shown in fig. below.

 It can be generated by rotating a circle or other conic about a specified axis.

 The equation for the cross-sectional circle shown in the side view is given by

(y − raxial)2 + z2 = r 2

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 4

 Rotating this circle about the z axis produces the torus whose surface positions

are described with the Cartesian equation

 The corresponding parametric equations for the torus with a circular cross-section are

x = (raxial + r cos φ) cos θ, − π ≤ φ ≤ π

y = (raxial + r cos φ) sin θ, − π ≤ θ ≤ π

z = r sin φ

 We could also generate a torus by rotating an ellipse, instead of a circle, about the z axis.

we can write the ellipse equation as

where raxial is the distance along the y axis from the rotation z axis to the ellipse

center. This generates a torus that can be described with the Cartesian equation

 The corresponding parametric representation for the torus with an elliptical crosssection

is

x = (raxial + ry cos φ) cos θ, − π ≤ φ ≤ π

y = (raxial + ry cos φ) sin θ, − π ≤ θ ≤ π

z = rz sin φ

OpenGL Quadric-Surface and Cubic-Surface Functions

 A number of other three-dimensional quadric-surface objects can be displayed using functions

that are included in the OpenGL Utility Toolkit (GLUT) and in the OpenGL Utility (GLU).

 With the GLUT functions, we can display a sphere, cone, torus, or the teapot

 With the GLU functions, we can display a sphere, cylinder, tapered cylinder, cone, flat

circular ring (or hollow disk), and a section of a circular ring (or disk).

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 5

GLUT Quadric-Surface Functions

Sphere

Function:

where,

glutWireSphere (r, nLongitudes, nLatitudes);

or

glutSolidSphere (r, nLongitudes, nLatitudes);

 r is sphere radius which is double precision point.

 nLongitudes and nLatitudes is number of longitude and latitude lines used to

approximate the sphere.

Cone

Function:

where,

glutWireCone (rBase, height, nLongitudes, nLatitudes);

or

glutSolidCone (rBase, height, nLongitudes, nLatitudes);

 rBase is the radius of cone base which is double precision point.

 height is the height of cone which is double precision point.

 nLongitudes and nLatitudes are assigned integer values that specify the number of

orthogonal surface lines for the quadrilateral mesh approximation.

Torus

Function:

glutWireTorus (rCrossSection, rAxial, nConcentrics, nRadialSlices);

or

glutSolidTorus (rCrossSection, rAxial, nConcentrics, nRadialSlices);

where,

 rCrossSection radius about the coplanar z axis

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 6

 rAxial is the distance of the circle center from the z axis

 nConcentrics specifies the number of concentric circles (with center on the z axis) to be

used on the torus surface,

 nRadialSlices specifies the number of radial slices through the torus surface

GLUT Cubic-Surface Teapot Function

Function:

glutWireTeapot (size);

or

glutSolidTeapot (size);

 The teapot surface is generated using OpenGL B´ezier curve functions.

 Parameter size sets the double-precision floating-point value for the maximum radius of

the teapot bowl.

 The teapot is centered on the world-coordinate origin coordinate origin with its vertical

axis along the y axis.

GLU Quadric-Surface Functions

 To generate a quadric surface using GLU functions

1. assign a name to the quadric,

2.activate the GLU quadric renderer, and

3.designate values for the surface parameters

 The following statements illustrate the basic sequence of calls for displaying a wire-

frame sphere centered on the world-coordinate origin:

GLUquadricObj *sphere1;

sphere1 = gluNewQuadric ();

gluQuadricDrawStyle (sphere1, GLU_LINE);

gluSphere (sphere1, r, nLongitudes, nLatitudes);

where,

 sphere1 is the name of the object

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 7

 the quadric renderer is activated with the gluNewQuadric function, and then the display

mode GLU_LINE is selected for sphere1 with the gluQuadricDrawStyle command

 Parameter r is assigned a double-precision value for the sphere radius

 nLongitudes and nLatitudes. number of longitude lines and latitude lines

Three other display modes are available for GLU quadric surfaces

GLU_POINT: quadric surface is displayed as point plot

GLU_SILHOUETTE: quadric surface displayed will not contain shared edges between two

coplanar polygon facets

GLU_FILL: quadric surface is displayed as patches of filled area.

 To produce a view of a cone, cylinder, or tapered cylinder, we replace the gluSphere

function with

gluCylinder (quadricName, rBase, rTop, height, nLongitudes, nLatitudes);

 The base of this object is in the xy plane (z=0), and the axis is the z axis.

 rBase is the radius at base and rTop is radius at top

 If rTop=0.0,weget a cone; if rTop=rBase,weobtain a cylinder

 Height is the height of the object and latitudes and longitude values will be given

as nLatitude and nLongitude.

 A flat, circular ring or solid disk is displayed in the xy plane (z=0) and centered on the

world-coordinate origin with

gluDisk (ringName, rInner, rOuter, nRadii, nRings);

 We set double-precision values for an inner radius and an outer radius with

parameters rInner and rOuter. If rInner = 0, the disk is solid.

 Otherwise, it is displayed with a concentric hole in the center of the disk.

 The disk surface is divided into a set of facets with integer parameters nRadii and

nRings

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 8

 We can specify a section of a circular ring with the following GLU function:

gluPartialDisk (ringName, rInner, rOuter, nRadii, nRings, startAngle,

sweepAngle);

 startAngle designates an angular position in degrees in the xy plane measured

clockwise from the positive y axis.

 parameter sweepAngle denotes an angular distance in degrees from the

startAngle position.

 A section of a flat, circular disk is displayed from angular position startAngle to

startAngle + sweepAngle

 For example, if startAngle = 0.0 and sweepAngle = 90.0, then the section of the

disk lying in the first quadrant of the xy plane is displayed.

 Allocated memory for any GLU quadric surface can be reclaimed and the surface

eliminated with

gluDeleteQuadric (quadricName);

 Also, we can define the front and back directions for any quadric surface with the

following orientation function:

gluQuadricOrientation (quadricName, normalVectorDirection);

Where,

Parameter normalVectorDirection is assigned either GLU_OUTSIDE or

GLU_ INSIDE

 Another option is the generation of surface-normal vectors, as follows:

gluQuadricNormals (quadricName, generationMode);

Where,

 A symbolic constant is assigned to parameter generationMode to indicate how

surface-normal vectors should be generated. The default is GLU_NONE.

 For flat surface shading (a constant color value for each surface), we use the

symbolic constant GLU_FLAT

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 9

 When other lighting and shading conditions are to be applied, we use the constant

GLU_SMOOTH, which generates a normal vector for each surface vertex

position.

 We can designate a function that is to be invoked if an error occurs during the

generation of a quadric surface:

gluQuadricCallback (quadricName, GLU_ERROR, function);

Example Program Using GLUT and GLU Quadric-Surface Functions

#include <GL/glut.h>

GLsizei winWidth = 500, winHeight = 500; // Initial display-window size.

void init (void)

{

glClearColor (1.0, 1.0, 1.0, 0.0); // Set display-window color.

}

void wireQuadSurfs (void)

{

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

glColor3f (0.0, 0.0, 1.0); // Set line-color to blue.

/* Set viewing parameters with world z axis as view-up direction. */

gluLookAt (2.0, 2.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0);

/* Position and display GLUT wire-frame sphere. */

glPushMatrix ();

glTranslatef (1.0, 1.0, 0.0);

glutWireSphere (0.75, 8, 6);

glPopMatrix ();

/* Position and display GLUT wire-frame cone. */

glPushMatrix ();

glTranslatef (1.0, -0.5, 0.5);

glutWireCone (0.7, 2.0, 7, 6);

glPopMatrix ();

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 10

/* Position and display GLU wire-frame cylinder. */

GLUquadricObj *cylinder; // Set name for GLU quadric object.

glPushMatrix ();

glTranslatef (0.0, 1.2, 0.8);

cylinder = gluNewQuadric ();

gluQuadricDrawStyle (cylinder, GLU_LINE);

gluCylinder (cylinder, 0.6, 0.6, 1.5, 6, 4);

glPopMatrix ();

glFlush ();

}

void winReshapeFcn (GLint newWidth, GLint newHeight)

{

glViewport (0, 0, newWidth, newHeight);

glMatrixMode (GL_PROJECTION);

glOrtho (-2.0, 2.0, -2.0, 2.0, 0.0, 5.0);

glMatrixMode (GL_MODELVIEW);

glClear (GL_COLOR_BUFFER_BIT);

}

void main (int argc, char** argv)

{

glutInit (&argc, argv);

glutInitWindowPosition (100, 100);

glutInitWindowSize (winWidth, winHeight);

glutCreateWindow ("Wire-Frame Quadric Surfaces");

init ();

glutDisplayFunc (wireQuadSurfs);

glutReshapeFunc (winReshapeFcn);

glutMainLoop ();

}

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 11

Bézier Spline Curves

 It was developed by the French engineer Pierre Bézier for use in the design of Renault

automobile bodies.

 Bézier splines have a number of properties that make them highly useful and convenient

for curve and surface design. They are also easy to implement.

 In general, a Bézier curve section can be fitted to any number of control points, although

some graphic packages limit the number of control points to four.

Bézier Curve Equations

 We first consider the general case of n + 1 control-point positions, denoted as

pk = (xk , yk , zk), with k varying from 0 to n.

 These coordinate points are blended to produce the following position vector P(u),

which describes the path of an approximating Bézier polynomial function between p0 and

pn:

 The Bézier blending functions BEZk,n(u) are the Bernstein polynomials

where parameters C(n, k) are the binomial coefficients

 A set of three parametric equations for the individual curve coordinates can be

represented as

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 12

 Below Figure demonstrates the appearance of some Bézier curves for various selections

of control points in the xy plane (z = 0).

 Recursive calculations can be used to obtain successive binomial-coefficient values as

for n ≥ k. Also, the Bézier blending functions satisfy the recursive relationship

BEZk,n(u) = (1 − u)BEZk,n−1(u) + u BEZk−1,n−1(u), n > k ≥ 1 (27)

with BEZk,k = uk and BEZ0,k = (1 − u)k .

Program

#include <GL/glut.h>

#include <stdlib.h>

#include <math.h>

/* Set initial size of the display window. */

GLsizei winWidth = 600, winHeight = 600;

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 13

/* Set size of world-coordinate clipping window. */

GLfloat xwcMin = -50.0, xwcMax = 50.0;

GLfloat ywcMin = -50.0, ywcMax = 50.0;

class wcPt3D {

public:

GLfloat x, y, z;

};

void init (void)

{

/* Set color of display window to white. */

glClearColor (1.0, 1.0, 1.0, 0.0);

}

void plotPoint (wcPt3D bezCurvePt)

{

glBegin (GL_POINTS);

glVertex2f (bezCurvePt.x, bezCurvePt.y);

glEnd ();

}

/* Compute binomial coefficients C for given value of n. */

void binomialCoeffs (GLint n, GLint * C)

{

GLint k, j;

for (k = 0; k <= n; k++) {

/* Compute n!/(k!(n - k)!). */

C [k] = 1;

for (j = n; j >= k + 1; j--)

C [k] *= j;

for (j = n - k; j >= 2; j--)

C [k] /= j;

}

}

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 14

void computeBezPt (GLfloat u, wcPt3D * bezPt, GLint nCtrlPts, wcPt3D * ctrlPts, GLint * C)

{

GLint k, n = nCtrlPts - 1;

GLfloat bezBlendFcn;

bezPt->x = bezPt->y = bezPt->z = 0.0;

/* Compute blending functions and blend control points. */

for (k = 0; k < nCtrlPts; k++) {

bezBlendFcn = C [k] * pow (u, k) * pow (1 - u, n - k);

bezPt->x += ctrlPts [k].x * bezBlendFcn;

bezPt->y += ctrlPts [k].y * bezBlendFcn;

bezPt->z += ctrlPts [k].z * bezBlendFcn;

}

}

void bezier (wcPt3D * ctrlPts, GLint nCtrlPts, GLint nBezCurvePts)

{

wcPt3D bezCurvePt;

GLfloat u;

GLint *C, k;

/* Allocate space for binomial coefficients */

C = new GLint [nCtrlPts];

binomialCoeffs (nCtrlPts - 1, C);

for (k = 0; k <= nBezCurvePts; k++) {

u = GLfloat (k) / GLfloat (nBezCurvePts);

computeBezPt (u, &bezCurvePt, nCtrlPts, ctrlPts, C);

plotPoint (bezCurvePt);

}

delete [] C;

}

void displayFcn (void)

{

/* Set example number of control points and number of

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 15

* curve positions to be plotted along the Bezier curve. */

GLint nCtrlPts = 4, nBezCurvePts = 1000;

wcPt3D ctrlPts [4] = { {-40.0, -40.0, 0.0}, {-10.0, 200.0, 0.0},

{10.0, -200.0, 0.0}, {40.0, 40.0, 0.0} };

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

glPointSize (4);

glColor3f (1.0, 0.0, 0.0); // Set point color to red.

bezier (ctrlPts, nCtrlPts, nBezCurvePts);

glFlush ();

}

void winReshapeFcn (GLint newWidth, GLint newHeight)

{

/* Maintain an aspect ratio of 1.0. */

glViewport (0, 0, newHeight, newHeight);

glMatrixMode (GL_PROJECTION);

glLoadIdentity ();

gluOrtho2D (xwcMin, xwcMax, ywcMin, ywcMax);

glClear (GL_COLOR_BUFFER_BIT);

}

void main (int argc, char** argv)

{

glutInit (&argc, argv);

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);

glutInitWindowPosition (50, 50);

glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Bezier Curve");

init ();

glutDisplayFunc (displayFcn);

glutReshapeFunc (winReshapeFcn);

glutMainLoop ();

}

Properties of Bézier Curves

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 16

Property1:

 A very useful property of a Bézier curve is that the curve connects the first and last

control points.

 Thus, a basic characteristic of any Bézier curve is that

P(0) = p0

P(1) = pn

 Values for the parametric first derivatives of a Bézier curve at the endpoints can be

calculated from control-point coordinates as

 The parametric second derivatives of a Bézier curve at the endpoints are calculated as

Property 2:

 Another important property of any Bézier curve is that it lies within the convex hull

(convex polygon boundary) of the control points.

 This follows from the fact that the Bézier blending functions are all positive and their

sum is always 1:

Other Properties:

 The basic functions are real.

 The degree of the polynomial defining the curve segment is one less than the number of

defining points.

 The curve generally follows the shape of the defining polygon,

 The tangent vectors at the ends of the curve have the same direction as the first and last

polygon spans respectively.

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 17

Design Techniques Using Bézier Curves

 A closed Bézier curve is generated when we set the last control-point position to the

coordinate position of the first control point.

 Specifying multiple control points at a single coordinate position gives more weight to

that position a single coordinate position is input as two control points, and the resulting

curve is pulled nearer to this position.

 When complicated curves are to be generated, they can be formed by piecing together

several Bézier sections of lower degree.

 Generating smaller Bézier-curve sections also gives us better local control over the shape

of the curve.

 Because Bézier curves connect the first and last control points, it is easy to match curve

sections.

 Also,Bézier curves have the important property that the tangent to the curve at an

endpoint is along the line joining that endpoint to the adjacent control point to obtain

first-order continuity between curve sections, we can pick control points p0’ and p1’for

the next curve section to be along the same straight line as control points pn−1 and pn of

the preceding section

 If the first curve section has n control points and the next curve section has n’ control

points, then we match curve tangents by placing control point p1’ at the position

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 18

Cubic Bézier Curves

 Cubic Bézier curves are generated with four control points. The four blending functions

for cubic Bézier curves, obtained by substituting n = 3 in the equations below, they are

 Plots of the four cubic Bézier blending functions are given in Figure

 At the end positions of the cubic Bézier curve, the parametric first derivatives (slopes) are

and the parametric second derivatives are

 A matrix formulation for the cubic-Bézier curve function is obtained by expanding the

polynomial expressions for the blending functions and restructuring the equations as

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 19

where the Bézier matrix is

Bézier Surfaces

 The parametric vector function for the Bézier surface is formed as the tensor product of

Bézier blending functions:

with pj,k specifying the location of the (m + 1) by (n + 1) control points

 Figure below illustrates two Bézier surface plots. The control points are connected by

dashed lines, and the solid lines show curves of constant u and constant v.

 Each curve of constant u is plotted by varying v over the interval from 0 to 1, with u fixed

at one of the values in this unit interval. Curves of constant v are plotted similarly.

 Bézier surfaces have the same properties as Bézier curves, and they provide a convenient

method for interactive design applications.

 To specify the threedimensional coordinate positions for the control points, we could first

construct a rectangular grid in the xy “ground” plane.

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 20

 We then choose elevations above the ground plane at the grid intersections as the z-

coordinate values for the control points.

OpenGL Curve Functions

 There are routines in the OpenGL Utility Toolkit (GLUT) that we can use to display

some three-dimensional quadrics, such as spheres and cones, and some other shapes.

 Another method we can use to generate a display of a simple curve is to approximate it

using a polyline. We just need to locate a set of points along the curve path and connect

the points with straight-line segments.

 Figure above illustrates various polyline displays that could be used for a circle segment.

 A third alternative is to write our own curve-generation functions based on the algorithms

with respect to line drawing and circle drawing.

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 21

OpenGL Approximation-Spline Functions

OpenGL Bézier-Spline Curve Functions

 We specify parameters and activate the routines for Bézier-curve display with the

OpenGL functions

glMap1* (GL_MAP1_VERTEX_3, uMin, uMax, stride, nPts, *ctrlPts);

glEnable (GL_MAP1_VERTEX_3);

 We deactivate the routines with

glDisable (GL_MAP1_VERTEX_3);

where,

 A suffix code of f or d is used with glMap1 to indicate either floating-point or double

precision for the data values. M

 inimum and maximum values for the curve parameter u are specified in uMin and uMax,

although these values for a Bézier curve are typically set to 0 and 1.0, respectively.

 Bézier control points are listed in array ctrlPts number of elements in this array is given

as a positive integer using parameter nPts.

 stride is assigned an integer offset that indicates the number of data values between the

beginning of one coordinate position in array ctrlPts and the beginning of the next

coordinate position

 A coordinate position along the curve path is calculated with

glEvalCoord1* (uValue);

Where,

 parameter uValue is assigned some value in the interval from uMin to uMax.

 Function glEvalCoord1 calculates a coordinate position using equation with the

parameter value

which maps the uValue to the interval from 0 to 1.0.

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 22

 A spline curve is generated with evenly spaced parameter values, and OpenGL provides

the following functions, which we can use to produce a set of uniformly spaced

parameter values:

glMapGrid1* (n, u1, u2);

glEvalMesh1 (mode, n1, n2);

Where,

 The suffix code for glMapGrid1 can be either f or d.

 Parameter n specifies the integer number of equal subdivisions over the range from u1 to

u2.

 Parameters n1 and n2 specify an integer range corresponding to u1 and u2.

 Parameter mode is assigned either GL POINT or GL LINE, depending on whether we

want to display the curve using discrete points (a dotted curve) or using straight-line

segments

 In other words, with mode = GL LINE, the preceding OpenGL commands are

equivalent to

glBegin (GL_LINE_STRIP);

for (k = n1; k <= n2; k++)

glEvalCoord1f (u1 + k * (u2 - u1) / n);

glEnd ();

OpenGL Bézier-Spline Surface Functions

 Activation and parameter specification for the OpenGL Bézier-surface routines are

accomplished with

glMap2* (GL_MAP2_VERTEX_3, uMin, uMax, uStride, nuPts, vMin,

vMax, vStride, nvPts, *ctrlPts);

glEnable (GL_MAP2_VERTEX_3);

Where,

 A suffix code of f or d is used with glMap2 to indicate either floating-point or double

precision for the data values.

 For a surface, we specify minimum and maximum values for both parameter u and

parameter v.

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 23

 If control points are to be specified using four-dimensional homogeneous coordinates, we

use the symbolic constant GL_MAP2_VERTEX_4 instead of GL_MAP2_VERTEX_3

 We deactivate the Bézier-surface routines with

glDisable {GL_MAP2_VERTEX_3}

 Coordinate positions on the Bézier surface can be calculated with

glEvalCoord2* (uValue, vValue);

or

glEvalCoord2*v (uvArray);

Where,

 Parameter uValue is assigned some value in the interval from uMin to uMax,

 Parameter vValue is assigned some value in the interval from vMin to vMax.

which maps each of uValue and vValue to the interval from 0 to 1.0

GLU B-Spline Curve Functions

 Although the GLU B-spline routines are referred to as NURBs functions, they can be used

to generate B-splines that are neither nonuniform nor rational.

 The following statements illustrate the basic sequence of calls for displaying a B-spline

curve:

GLUnurbsObj *curveName;

curveName = gluNewNurbsRenderer ();

gluBeginCurve (curveName);

gluNurbsCurve (curveName, nknots, *knotVector, stride, *ctrlPts,

degParam, GL_MAP1_VERTEX_3);

gluEndCurve (curveName);

 We eliminate a defined B-spline with

gluDeleteNurbsRenderer (curveName);

 A B-spline curve is divided automatically into a number of sections and displayed as a

polyline by theGLUroutines.

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 24

 However, a variety of B-spline rendering options can also be selected with repeated calls

to the following GLU function:

gluNurbsProperty (splineName, property, value);

GLU B-Spline Surface Functions

GLUnurbsObj *surfName

surfName = gluNewNurbsRenderer ();

gluNurbsProperty (surfName, property1, value1);

gluNurbsProperty (surfName, property2, value2);

gluNurbsProperty (surfName, property3, value3);

...

gluBeginSurface (surfName);

gluNurbsSurface (surfName, nuKnots, uKnotVector, nvKnots, vKnotVector,

uStride, vStride, &ctrlPts [0][0][0], uDegParam, vDegParam,

GL_MAP2_VERTEX_3);

gluEndSurface (surfName);

 As an example of property setting, the following statements specify a wire-frame,

triangularly tessellated display for a surface:

gluNurbsProperty (surfName, GLU_NURBS_MODE, GLU_NURBS_TESSELLATOR);

gluNurbsProperty (surfName, GLU_DISPLAY_MODE, GLU_OUTLINE_POLYGON);

 To determine the current value of a B-spline property, we use the following query

function:

gluGetNurbsProperty (splineName, property, value);

 When the property GLU_AUTO_LOAD_MATRIX is set to the value GL_FALSE, we

invoke

gluLoadSamplingMatrices (splineName, modelviewMat, projMat, viewport);

 Various events associated with spline objects are processed using

gluNurbsCallback (splineName, event, fcn);

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 25

 Data values for the gluNurbsCallback function are supplied by

gluNurbsCallbackData (splineName, dataValues);

GLU Surface-Trimming Functions

 A set of one or more two-dimensional trimming curves is specified for a B-spline surface

with the following statements:

gluBeginTrim (surfName);

gluPwlCurve (surfName, nPts, *curvePts, stride, GLU_MAP1_TRIM_2);

...

gluEndTrim (surfName);

Where,

 Parameter surfName is the name of the B-spline surface to be trimmed.

 A set of floating-point coordinates for the trimming curve is specified in array parameter

curvePts, which contains nPts coordinate positions.

 An integer offset between successive coordinate positions is given in parameter stride

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 26

Module 5 ***SAI RAM*** Curves

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 27

Module 5 ***SAI RAM*** Computer Animation

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 1

Animation

Raster methods of computer animation

Design of animation sequences

Traditional animation techniques

General computer animation function

OpenGL animation procedures

Introduction:

 To 'animate' is literally 'to give life to'.

 'Animating' is moving something which can't move itself.

 Animation adds to graphics the dimension of time which vastly increases the amount of

information which can be transmitted.

 Computer animation generally refers to any time sequence of visual changes in a

picture.

 In addition to changing object positions using translations or rotations, a computer-

generated animation could display time variations in object size, color, transparency, or

surface texture.

 Two basic methods for constructing a motion sequence are

1. real-time animation and

 In a real-time computer-animation, each stage of the sequence is viewed as it

is created.

 Thus the animation must be generated at a rate that is compatible with the

constraints of the refresh rate.

2. frame-by-frame animation

 For a frame-by-frame animation, each frame of the motion is separately

generated and stored.

 Later, the frames can be recorded on film, or they can be displayed

consecutively on a video monitor in “real-time playback” mode.

Module 5 ***SAI RAM*** Computer Animation

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 2

Raster Methods for Computer Animation

 We can create simple animation sequences in our programs using real-time methods.

 We can produce an animation sequence on a raster-scan system one frame at a time, so

that each completed frame could be saved in a file for later viewing.

 The animation can then be viewed by cycling through the completed frame sequence, or

the frames could be transferred to film.

 If we want to generate an animation in real time, however, we need to produce the motion

frames quickly enough so that a continuous motion sequence is displayed.

 Because the screen display is generated from successively modified pixel values in the

refresh buffer, we can take advantage of some of the characteristics of the raster screen-

refresh process to produce motion sequences quickly.

Double Buffering

 One method for producing a real-time animation with a raster system is to employ two

refresh buffers.

 We create a frame for the animation in one of the buffers.

 Then, while the screen is being refreshed from that buffer, we construct the next frame in

the other buffer.

 When that frame is complete, we switch the roles of the two buffers so that the refresh

routines use the second buffer during the process of creating the next frame in the first

buffer.

 When a call is made to switch two refresh buffers, the interchange could be performed at

various times.

 The most straight forward implementation is to switch the two buffers at the end of the

current refresh cycle, during the vertical retrace of the electron beam.

 If a program can complete the construction of a frame within the time of a refresh cycle,

say 1/60 of a second, each motion sequence is displayed in synchronization with the

screen refresh rate.

 If the time to construct a frame is longer than the refresh time, the current frame is

displayed for two or more refresh cycles while the next animation frame is being

generated.

Module 5 ***SAI RAM*** Computer Animation

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 3

 Similarly, if the frame construction time is 1/25 of a second, the animation frame rate is

reduced to 20 frames per second because each frame is displayed three times.

 Irregular animation frame rates can occur with double buffering when the frame

construction time is very nearly equal to an integer multiple of the screen refresh time the

animation frame rate can change abruptly and erratically.

 One way to compensate for this effect is to add a small time delay to the program.

 Another possibility is to alter the motion or scene description to shorten the frame

construction time.

Generating Animations Using Raster Operations

 We can also generate real-time raster animations for limited applications using block

transfers of a rectangular array of pixel values.

 A simple method for translating an object from one location to another in the xy plane is

to transfer the group of pixel values that define the shape of the object to the new location

 Sequences of raster operations can be executed to produce realtime animation for either

two-dimensional or three-dimensional objects, so long as we restrict the animation to

motions in the projection plane.

 Then no viewing or visible-surface algorithms need be invoked.

 We can also animate objects along two-dimensional motion paths using color table

transformations.

 Here we predefine the object at successive positions along the motion path and set the

successive blocks of pixel values to color-table entries.

 The pixels at the first position of the object are set to a foreground color, and the pixels at

the other object positions are set to the background color .

 Then the animation is then accomplished by changing the color-table values so that the

object color at successive positions along the animation path becomes the foreground

color as the preceding position is set to the background color

Design of Animation Sequences

 Animation sequence in general is designed in the following steps.

Module 5 ***SAI RAM*** Computer Animation

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 4

1. Storyboard layout

2. Object definitions.

3. Key-frame specifications

4. Generation of in-between frames.

 This approach of carrying out animations is applied to any other applications as well,

although some applications are exceptional cases and do not follow this sequence.

 For frame-by-frame animation, every frame of the display or scene is generated

separately and stored. Later, the frame recording can be done and they might be displayed

consecutively in terms of movie.

 The outline of the action is storyboard. This explains the motion sequence. The

storyboard consists of a set of rough structures or it could be a list of the basic ideas for

the motion.

 For each participant in the action, an object definition is given. Objects are described in

terms of basic shapes the examples of which are splines or polygons. The related

movement associated with the objects are specified along with the shapes.

 A key frame in animation can be defined as a detailed drawing of the scene at a certain

time in the animation sequence. Each object is positioned according to the time for that

frame, within each key frame.

 Some key frames are selected at extreme positions and the others are placed so that the

time interval between two consecutive key frames is not large. Greater number of key

frames are specified for smooth motions than for slow and varying motion.

 And the intermediate frames between the key frames are In-betweens. And the Media that

we use determines the number of In-betweens which are required to display the

animation. A Film needs 24 frames per second, and graphics terminals are refreshed at

the rate of 30 to 60 frames per second.

 Depending on the speed specified for the motion, some key frames are duplicated. For a

one minutes film sequence with no duplication, we would require 288 key frames. We

place the key frames a bit distant if the motion is not too complicated.

 A number of other tasks may be carried out depending upon the application requirement

for example synchronization of a sound track.

Module 5 ***SAI RAM*** Computer Animation

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 5

Traditional Animation Techniques

 Film animators use a variety of methods for depicting and emphasizing motion

sequences.

 These include object deformations, spacing between animation frames, motion

anticipation and follow-through, and action focusing

 One of the most important techniques for

simulating acceleration effects, particularly

for non rigid objects, is squash and stretch.

 Figure shows how this technique is used to

emphasize the acceleration and deceleration of a

bouncing ball. As the ball accelerates,

it begins to stretch. When the ball hits the

floor and stops, it is first compressed

(squashed) and then stretched again as it accelerates and bounces upwards.

 Another technique used by film animators

is timing, which refers to the spacing

between motion frames. A slower moving object

is represented with more closely spaced frames,

and a faster moving object is displayed with fewer

frames over the path of the motion.

 Object movements can also be emphasized by creating preliminary actions that indicate

an anticipation of a coming motion

General Computer-Animation Functions

 Typical animation functions include managing object motions, generating views of

objects, producing camera motions, and the generation of in-between frames

Module 5 ***SAI RAM*** Computer Animation

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 6

 Some animation packages, such as Wavefront for example, provide special functions for

both the overall animation design and the processing of individual objects.

 Others are special-purpose packages for particular features of an animation, such as a

system for generating in-between frames or a system for figure animation.

 A set of routines is often provided in a general animation package for storing and

managing the object database. Object shapes and associated parameters are stored and

updated in the database. Other object functions include those for generating the object

motion and those for rendering the object surfaces

 Another typical function set simulates camera movements. Standard camera motions are

zooming, panning, and tilting. Finally, given the specification for the key frames, the in-

betweens can be generated automatically.

OpenGL Animation Procedures

 Double-buffering operations, if available, are activated using the following GLUT

command:

glutInitDisplayMode (GLUT_DOUBLE);

 This provides two buffers, called the front buffer and the back buffer, that we can use

alternately to refresh the screen display

 We specify when the roles of the two buffers are to be interchanged using

glutSwapBuffers ();

 To determine whether double-buffer operations are available on a system, we can issue

the following query:

glGetBooleanv (GL_DOUBLEBUFFER, status);

 A value of GL_TRUE is returned to array parameter status if both front and back

buffers are available on a system. Otherwise, the returned value is GL _FALSE.

 For a continuous animation, we can also use

glutIdleFunc (animationFcn);

 This procedure is continuously executed whenever there are no display-window events

that must be processed.

 To disable the glutIdleFunc, we set its argument to the value NULL or the value 0.

Module 5 ***SAI RAM*** Computer Animation

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 7

Example Program

#include <GL/glut.h>

#include <math.h>

#include <stdlib.h>

const double TWO_PI = 6.2831853;

GLsizei winWidth = 500, winHeight = 500; // Initial display window size.

GLuint regHex; // Define name for display list.

static GLfloat rotTheta = 0.0;

class scrPt {

public:

GLint x, y;

};

static void init (void)

{

scrPt hexVertex;

GLdouble hexTheta;

GLint k;

glClearColor (1.0, 1.0, 1.0, 0.0);

/* Set up a display list for a red regular hexagon.

* Vertices for the hexagon are six equally spaced

* points around the circumference of a circle.

*/

regHex = glGenLists (1);

glNewList (regHex, GL_COMPILE);

glColor3f (1.0, 0.0, 0.0);

glBegin (GL_POLYGON);

for (k = 0; k < 6; k++) {

hexTheta = TWO_PI * k / 6;

Module 5 ***SAI RAM*** Computer Animation

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 8

hexVertex.x = 150 + 100 * cos (hexTheta);

hexVertex.y = 150 + 100 * sin (hexTheta);

glVertex2i (hexVertex.x, hexVertex.y);

}

glEnd ();

glEndList ();

}

void displayHex (void)

{

glClear (GL_COLOR_BUFFER_BIT);

glPushMatrix ();

glRotatef (rotTheta, 0.0, 0.0, 1.0);

glCallList (regHex);

glPopMatrix ();

glutSwapBuffers ();

glFlush ();

}

void rotateHex (void)

{

rotTheta += 3.0;

if (rotTheta > 360.0)

rotTheta -= 360.0;

glutPostRedisplay ();

}

void winReshapeFcn (GLint newWidth, GLint newHeight)

{

glViewport (0, 0, (GLsizei) newWidth, (GLsizei) newHeight);

glMatrixMode (GL_PROJECTION);

glLoadIdentity ();

gluOrtho2D (-320.0, 320.0, -320.0, 320.0);

glMatrixMode (GL_MODELVIEW);

Module 5 ***SAI RAM*** Computer Animation

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 9

glLoadIdentity ();

glClear (GL_COLOR_BUFFER_BIT);

}

void mouseFcn (GLint button, GLint action, GLint x, GLint y)

{

switch (button) {

case GLUT_MIDDLE_BUTTON: // Start the rotation.

if (action == GLUT_DOWN)

glutIdleFunc (rotateHex);

break;

case GLUT_RIGHT_BUTTON: // Stop the rotation.

if (action == GLUT_DOWN)

glutIdleFunc (NULL);

break;

default:

}

}

break;

void main(int argc, char ** argv)

{

glutInit (&argc, argv);

glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);

glutInitWindowPosition (150, 150);

glutInitWindowSize (winWidth, winHeight);

glutCreateWindow ("Animation Example");

init ();

glutDisplayFunc (displayHex);

glutReshapeFunc (winReshapeFcn);

glutMouseFunc (mouseFcn);

glutMainLoop ();

}

	INPUT AND INTERACTION Interaction; Input devices;
	INTERACTION
	INPUT DEVICES
	PHYSICAL INPUT DEVICES
	LOGICAL INPUT DEVICES
	 The measurements that the device returns to the user program
	INPUT MODES

	CLIENT AND SERVER
	DISPLAY LISTS
	DEFINITION AND EXECUTION OF DISPLAY LISTS
	glPushAttrib(GL_ALL_ATTRIB_BITS); glPushMatrix();
	glPopAttrib(); glPopMatrix();
	glGenLists (number)
	glCallLists()
	base = glGenLists(256); for(i=0;i<256;i++) {
	glEndList();
	glCallLists((GLint) strlen (text_string), GL_BYTE, text_string);
	FONTS IN GLUT
	 glutBitmapCharacter(GLUT_BITMAP_8_BY_13, int character);

	DISPLAY LIST AND MODELING
	PROGRAMMING EVENT DRIVEN INPUT
	USING POINTING DEVICES
	Write an OpenGL program to display square when a left button is pressed and to exit the program if right button is pressed.
	KEYBOARD EVENTS
	void mykey (unsigned char key, int x, int y)
	glutKeyboardFunc(mykey);
	glutReshapeFunc(myReshape);
	WINDOW MANAGEMENT
	id = glutCreateWindow(“second window”);

	MENUS
	PICKING
	O Selection:
	O Bounding boxes or extents:
	PICKING AND SELECTION MODE
	The following code provides the implementation of picking process:

	A SIMPLE CAD PROGRAM
	BUILDING INTERACTIVE MODELS
	ANIMATING INTERACTIVE PROGRAMS
	glutIdleFunc(idle);
	glutMouseFunc(mouse);
	DOUBLE BUFFERING:
	glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);
	USING TIMER:
	glutTimerFunc(int delay, void(*timer_func (int), int value)

	DESIGN OF INTERACTIVE PROGRAMS
	TOOLKITS, WIDGETS AND FRAME BUFFER:

	LOGIC OPERATIONS
	can denote the new destination bit as d’. d’ = d s
	DRAWING ERASABLE LINES
	XOR AND COLOR
	CURSORS AND OVERLAY PLANES

	Curves:
	Curved surfaces Quadric surfaces
	Bezier surfaces
	 Parametric form:
	 Non parametric form:
	Quadric surfaces
	2. Ellipsoid

	OpenGL Quadric-Surface and Cubic-Surface Functions
	Function:
	glutWireSphere (r, nLongitudes, nLatitudes);
	glutSolidSphere (r, nLongitudes, nLatitudes);
	Function: (1)
	glutWireCone (rBase, height, nLongitudes, nLatitudes); or
	Function: (2)
	glutSolidTorus (rCrossSection, rAxial, nConcentrics, nRadialSlices);
	GLUT Cubic-Surface Teapot Function Function:
	glutSolidTeapot (size);
	where,
	gluCylinder (quadricName, rBase, rTop, height, nLongitudes, nLatitudes);
	gluDisk (ringName, rInner, rOuter, nRadii, nRings);
	nRings
	gluPartialDisk (ringName, rInner, rOuter, nRadii, nRings, startAngle, sweepAngle);
	startAngle + sweepAngle
	gluDeleteQuadric (quadricName);
	gluQuadricOrientation (quadricName, normalVectorDirection);
	GLU_ INSIDE
	gluQuadricNormals (quadricName, generationMode);
	gluQuadricCallback (quadricName, GLU_ERROR, function);

	Bézier Spline Curves
	Bézier Curve Equations
	Property 2:
	Other Properties:
	Design Techniques Using Bézier Curves
	Cubic Bézier Curves

	Bézier Surfaces
	OpenGL Curve Functions
	OpenGL Approximation-Spline Functions
	OpenGL Bézier-Spline Curve Functions
	glDisable (GL_MAP1_VERTEX_3);
	glEvalCoord1* (uValue);
	glMapGrid1* (n, u1, u2); glEvalMesh1 (mode, n1, n2);
	glBegin (GL_LINE_STRIP);
	glEvalCoord1f (u1 + k * (u2 - u1) / n);
	OpenGL Bézier-Spline Surface Functions

	glMap2* (GL_MAP2_VERTEX_3, uMin, uMax, uStride, nuPts, vMin, vMax, vStride, nvPts, *ctrlPts);
	glDisable {GL_MAP2_VERTEX_3}
	glEvalCoord2* (uValue, vValue);
	glEvalCoord2*v (uvArray);
	GLU B-Spline Curve Functions

	GLUnurbsObj *curveName; curveName = gluNewNurbsRenderer (); gluBeginCurve (curveName);
	gluEndCurve (curveName);
	gluDeleteNurbsRenderer (curveName);
	gluNurbsProperty (splineName, property, value);
	GLUnurbsObj *surfName
	...
	gluNurbsSurface (surfName, nuKnots, uKnotVector, nvKnots, vKnotVector, uStride, vStride, &ctrlPts [0][0][0], uDegParam, vDegParam, GL_MAP2_VERTEX_3);
	gluNurbsProperty (surfName, GLU_NURBS_MODE, GLU_NURBS_TESSELLATOR); gluNurbsProperty (surfName, GLU_DISPLAY_MODE, GLU_OUTLINE_POLYGON);
	gluGetNurbsProperty (splineName, property, value);
	gluLoadSamplingMatrices (splineName, modelviewMat, projMat, viewport);
	gluNurbsCallback (splineName, event, fcn);
	gluNurbsCallbackData (splineName, dataValues);
	GLU Surface-Trimming Functions

	gluBeginTrim (surfName);
	... (1)

	Animation
	1. real-time animation and
	2. frame-by-frame animation

	Raster Methods for Computer Animation
	Double Buffering
	Generating Animations Using Raster Operations

	Design of Animation Sequences
	Traditional Animation Techniques
	General Computer-Animation Functions
	OpenGL Animation Procedures
	glutInitDisplayMode (GLUT_DOUBLE);
	glutSwapBuffers ();
	glGetBooleanv (GL_DOUBLEBUFFER, status);
	glutIdleFunc (animationFcn);

