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Introduction 

 Fill area Primitives: 

Polygon fill-areas, 

OpenGL polygon Fill Area Functions, 

Fill area attributes, 

General scan line polygon fill algorithm, 

OpenGL fill-area Attribute functions. 

 

 

Introduction 

 An useful construct for describing components of a picture is an area that is filled with 

some solid color or pattern. 

 A picture component of this type is typically referred to as a fill area or a filled area. 

 Any fill-area shape is possible, graphics libraries generally do not support specifications 

for arbitrary fill shapes 

 Figure below illustrates a few possible fill-area shapes. 

 

 

 

 

 

 

 

 

 Graphics routines can more efficiently process polygons than other kinds of fill shapes 

because polygon boundaries are described with linear equations. 

 When lighting effects and surface-shading procedures are applied, an approximated 

curved surface can be displayed quite realistically. 

 Approximating a curved surface with polygon facets is sometimes referred to as surface 

tessellation, or fitting the surface with a polygon mesh. 
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 Below figure shows the side and top surfaces of a metal cylinder approximated in an 

outline form as a polygon mesh. 

 

 

 

 

 

 

 
 Displays of such figures can be generated quickly as wire-frame views, showing only the 

polygon edges to give a general indication of the surface structure 

 Objects described with a set of polygon surface patches are usually referred to as standard 

graphics objects, or just graphics objects. 

 
Polygon Fill Areas 

 A polygon is a plane figure specified by a set of three or more coordinate positions, 

called vertices, that are connected in sequence by straight-line segments, called the edges 

or sides of the polygon. 

 It is required that the polygon edges have no common point other than their endpoints. 

 Thus, by definition, a polygon must have all its vertices within a single plane and there 

can be no edge crossings 

 Examples of polygons include triangles, rectangles, octagons, and decagons 

 Any plane figure with a closed-polyline boundary is alluded to as a polygon, and one 

with no crossing edges is referred to as a standard polygon or a simple polygon 

Problem: 

 For a computer-graphics application, it is possible that a designated set of polygon 

vertices do not all lie exactly in one plane 

 This is due to roundoff error in the calculation of numerical values, to errors in selecting 

coordinate positions for the vertices, or, more typically, to approximating a curved 

surface with a set of polygonal patches 

Solution: 

 To divide the specified surface mesh into triangles 



Module 2 ***SAI RAM*** Fill Area Primitives 

Mr. ABHILASH D C, Dept., of CSE 3 

 

 

Polygon Classifications 

 Polygons are classified into two types 

1. Convex Polygon and 

2. Concave Polygon 

Convex Polygon: 

 The polygon is convex if all interior angles of a polygon are less than or equal to 180◦, 

where an interior angle of a polygon is an angle inside the polygon boundary that is 

formed by two adjacent edges 

 An equivalent definition of a convex polygon is that its interior lies completely on one 

side of the infinite extension line of any one of its edges. 

 Also, if we select any two points in the interior of a convex polygon, the line segment 

joining the two points is also in the interior. 

Concave Polygon: 

 A polygon that is not convex is called a concave polygon. 

Te below figure shows convex and concave polygon 

 

 

 

 

 

 

 

 The term degenerate polygon is often used to describe a set of vertices that are collinear 

or that have repeated coordinate positions. 

 
Problems in concave polygon: 

 Implementations of fill algorithms and other graphics routines are more complicated 

Solution: 

 It is generally more efficient to split a concave polygon into a set of convex polygons 

before processing 
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Identifying Concave Polygons 

Characteristics: 

 A concave polygon has at least one interior angle greater than 180◦. 

 The extension of some edges of a concave polygon will intersect other edges, and 

 Some pair of interior points will produce a line segment that intersects the polygon 

boundary 

 
Identification algorithm 1 

 Identifying a concave polygon by calculating cross-products of successive pairs of edge 

vectors. 

 If we set up a vector for each polygon edge, then we can use the cross-product of adjacent 

edges to test for concavity. All such vector products will be of the same sign (positive or 

negative) for a convex polygon. 

 Therefore, if some cross-products yield a positive value and some a negative value, we 

have a concave polygon 

 

 

 

 

 

 

 

 

 

 

 
 

Identification algorithm 2 

 Look at the polygon vertex positions relative to the extension line of any edge. 

 If some vertices are on one side of the extension line and some vertices are on the other 

side, the polygon is concave. 
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Splitting Concave Polygons 

 Split concave polygon it into a set of convex polygons using edge vectors and edge cross- 

products; or, we can use vertex positions relative to an edge extension line to determine 

which vertices are on one side of this line and which are on the other. 

 
Vector method 

 First need to form the edge vectors. 

 Given two consecutive vertex positions, Vk and Vk+1, we define the edge vector between 

them as 

Ek = Vk+1 – Vk 

 Calculate the cross-products of successive edge vectors in order around the polygon 

perimeter. 

 If the z component of some cross-products is positive while other cross-products have a 

negative z component, the polygon is concave. 

 We can apply the vector method by processing edge vectors in counterclockwise order If 

any cross-product has a negative z component (as in below figure), the polygon is 

concave and we can split it along the line of the first edge vector in the cross-product pair 

 
E1 = (1, 0, 0) E2 = (1, 1, 0) 

E3 = (1, −1, 0) E4 = (0, 2, 0) 

E5 = (−3, 0, 0) E6 = (0, −2, 0) 

 

 

 

 

 

 
 Where the z component is 0, since all edges are in the xy plane. 

 The crossproduct Ej × Ek for two successive edge vectors is a vector perpendicular to the 

xy plane with z component equal to E jxEky − EkxE jy: 

 The values for the above figure is as follows 

E1 × E2 = (0, 0, 1) E2 × E3 = (0, 0, −2) 

E3 × E4 = (0, 0, 2) E4 × E5 = (0, 0, 6) 
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E5 × E6 = (0, 0, 6) E6 × E1 = (0, 0, 2) 

 
 

 Since the cross-product E2 × E3 has a negative z component, we split the polygon along 

the line of vector E2. 

 The line equation for this edge has a slope of 1 and a y intercept of −1 . No other edge 

cross-products are negative, so the two new polygons are both convex. 

 
Rotational method 

 Proceeding counterclockwise around the polygon edges, 

we shift the position of the polygon so that each vertex Vk 

in turn is at the coordinate origin. 

 We rotate the polygon about the origin in a clockwise 

direction so that the next vertex Vk+1 is on the x axis. 

 If the following vertex, Vk+2, is below the x axis, 

the polygon is concave. 

 We then split the polygon along the x axis to form two 

new polygons, and we repeat the concave test for 

each of the two new polygons 

 
Splitting a Convex Polygon into a Set of Triangles 

 Once we have a vertex list for a convex polygon, we could transform it into a set of 

triangles. 

 First define any sequence of three consecutive vertices to be a new polygon (a triangle). 

 The middle triangle vertex is then deleted from the original vertex list . 

 The same procedure is applied to this modified vertex list to strip off another triangle. 

 We continue forming triangles in this manner until the original polygon is reduced to just 

three vertices, which define the last triangle in the set. 

 Concave polygon can also be divided into a set of triangles using this approach, although 

care must be taken that the new diagonal edge formed by joining the first and third 

selected vertices does not cross the concave portion of the polygon, and that the three 

selected vertices at each step form an interior angle that is less than 180◦ 
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Identifying interior and exterior region of polygon 

 We may want to specify a complex fill region with intersecting edges. 

 For such shapes, it is not always clear which regions of the xy plane we should call 

“interior” and which regions. 

 We should designate as “exterior” to the object boundaries. 

 Two commonly used algorithms 

1. Odd-Even rule and 

2. The nonzero winding-number rule. 

 
 

Inside-Outside Tests 

 Also called the odd-parity rule or the even-odd rule. 

  Draw a line from any position P to a distant point outside the coordinate extents of the 

closed polyline. 

 Then we count the number of line-segment crossings along this line. 

 If the number of segments crossed by this line is odd, then P is considered to be an 

interior point Otherwise, P is an exterior point 

 We can use this procedure, for example,to fill the interior region between two concentric 

circles or two concentric polygons with a specified color. 

 
Nonzero Winding-Number rule 

 This counts the number of times that the boundary of an object “winds” around a 

particular point in the counterclockwise direction termed as winding number, 

 Initialize the winding number to 0 and again imagining a line drawn from any position P 

to a distant point beyond the coordinate extents of the object. 

 The line we choose must not pass through any endpoint coordinates. 

 As we move along the line from position P to the distant point, we count the number of 

object line segments that cross the reference line in each direction 

 We add 1 to the winding number every time we intersect a segment that crosses the line 

in the direction from right to left, and we subtract 1 very time we intersect a segment that 

crosses from left to right 
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 If the winding number is nonzero, P is considered to be an interior point. Otherwise, P is 

taken to be an exterior point 

 

 

 

 

 

 

 

 

 

 

 

 

 The nonzero winding-number rule tends to classify as interior some areas that the odd- 

even rule deems to be exterior. 

 Variations of the nonzero winding-number rule can be used to define interior regions in 

other ways define a point to be interior if its winding number is positive or if it is 

negative; or we could use any other rule to generate a variety of fill shapes 

 Boolean operations are used to specify a fill area as a combination of two regions 

 One way to implement Boolean operations is by 

using a variation of the basic winding-number rule 

consider the direction for each boundary to be 

counterclockwise, the union of two regions would 

consist of those points whose winding number is positive 

 
 

 The intersection of two regions with counterclockwise 

boundaries would contain those points whose 

winding number is greater than 1, 
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 To set up a fill area that is the difference of two 

regions (say, A − B), we can enclose region A 

with a counterclockwise border and 

B with a clockwise border 

 
Polygon Tables 

 The objects in a scene are described as sets of polygon surface facets 

 The description for each object includes coordinate information specifying the geometry 

for the polygon facets and other surface parameters such as color, transparency, and light- 

reflection properties. 

 The data of the polygons are placed into tables that are to be used in the subsequent 

processing, display, and manipulation of the objects in the scene 

 These polygon data tables can be organized into two groups: 

1. Geometric tables and 

2. Attribute tables 

 Geometric data tables contain vertex coordinates and parameters to identify the spatial 

orientation of the polygon surfaces. 

  Attribute information for an object includes parameters specifying the degree of 

transparency of the object and its surface reflectivity and texture characteristics 

 Geometric data for the objects in a scene are arranged conveniently in three lists: a vertex 

table, an edge table, and a surface-facet table. 

 Coordinate values for each vertex in the object are stored in the vertex table. 

 The edge table contains pointers back into the vertex table to identify the vertices for 

each polygon edge. 

 And the surface-facet table contains pointers back into the edge table to identify the edges 

for each polygon 
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 The object can be displayed efficiently by using data from the edge table to identify 

polygon boundaries. 

 An alternative arrangement is to use just two tables: a vertex table and a surface-facet 

table this scheme is less convenient, and some edges could get drawn twice in a wire- 

frame display. 

 Another possibility is to use only a surface-facet table, but this duplicates coordinate 

information, since explicit coordinate values are listed for each vertex in each polygon 

facet. Also the relationship between edges and facets would have to be reconstructed 

from the vertex listings in the surface-facet table. 

 We could expand the edge table to include forward pointers into the surface-facet table so 

that a common edge between polygons could be identifiedmore rapidly the vertex table 

could be expanded to reference corresponding edges, for faster information retrieval 

 

 

 

 

 

 

 
 Because the geometric data tables may contain extensive listings of vertices and edges for 

complex objects and scenes, it is important that the data be checked for consistency and 

completeness. 

 Some of the tests that could be performed by a graphics package are 

(1) that every vertex is listed as an endpoint for at least two edges, 
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(2) that every edge is part of at least one polygon, 

(3) that every polygon is closed, 

(4) that each polygon has at least one shared edge, and 

(5) that if the edge table contains pointers to polygons, every edge referenced by a 

polygon pointer has a reciprocal pointer back to the polygon. 

 
Plane Equations 

 Each polygon in a scene is contained within a plane of infinite extent. 

 The general equation of a plane is 

Ax + B y + C z + D = 0 

Where, 

 (x, y, z) is any point on the plane, and 

 The coefficients A, B, C, and D (called plane parameters) are 

constants describing the spatial properties of the plane. 

 We can obtain the values of A, B, C, and D by solving a set of three plane equations 

using the coordinate values for three noncollinear points in the plane for the three 

successive convex-polygon vertices, (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3), in a 

counterclockwise order and solve the following set of simultaneous linear plane 

equations for the ratios A/D, B/D, and C/D: 

(A/D)xk + (B/D)yk + (C/D)zk = −1, k = 1, 2, 3 

 The solution to this set of equations can be obtained in determinant form, using Cramer’s 

rule, as 

 

 

 

 

 

 

 
 Expanding the determinants, we can write the calculations for the plane coefficients in 

the form 
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 It is possible that the coordinates defining a polygon facet may not be contained within a 

single plane. 

 We can solve this problem by dividing the facet into a set of triangles; or we could find 

an approximating plane for the vertex list. 

 One method for obtaining an approximating plane is to divide the vertex list into subsets, 

where each subset contains three vertices, and calculate plane parameters A, B, C, Dfor 

each subset. 

 
Front and Back Polygon Faces 

 The side of a polygon that faces into the object interior is called the back face, and the 

visible, or outward, side is the front face . 

 Every polygon is contained within an infinite plane that partitions space into two regions. 

 Any point that is not on the plane and that is visible to the front face of a polygon surface 

section is said to be in front of (or outside) the plane, and, thus, outside the object. 

 And any point that is visible to the back face of the polygon is behind (or inside) the 

plane. 

 Plane equations can be used to identify the position of spatial points relative to the 

polygon facets of an object. 

 For any point (x, y, z) not on a plane with parameters A, B, C, D, we have 

Ax + B y + C z + D != 0 

 Thus, we can identify the point as either behind or in front of a polygon surface contained 

within that plane according to the sign (negative or positive) of 

Ax + By + Cz + D: 

if Ax + B y + C z + D < 0, the point (x, y, z) is behind the plane 

if Ax + B y + C z + D > 0, the point (x, y, z) is in front of the plane 

 Orientation of a polygon surface in space can be described with the normal vector for the 

plane containing that polygon 
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 The normal vector points in a direction from inside the plane to the outside; that is, from 

the back face of the polygon to the front face. 

 Thus, the normal vector for this plane is N = (1, 0, 0), which is in the direction of the 

positive x axis. 

 That is, the normal vector is pointing from inside the cube to the outside and is 

perpendicular to the plane x = 1. 

 The elements of a normal vector can also be obtained using a vector crossproduct 

Calculation. 

 We have a convex-polygon surface facet and a right-handed Cartesian system, we again 

select any three vertex positions,V1,V2, and V3, taken in counterclockwise order when 

viewing from outside the object toward the inside. 

 Forming two vectors, one from V1 to V2 and the second from V1 to V3, we calculate N 

as the vector cross-product: 

N = (V2 − V1) × (V3 − V1) 

 This generates values for the plane parameters A, B, and C.We can then obtain the value 

for parameter D by substituting these values and the coordinates in 

Ax + B y + C z + D = 0 

 The plane equation can be expressed in vector form using the normal N and the position 

P of any point in the plane as 

N·P = −D 
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OpenGL Polygon Fill-Area Functions 

 A glVertex function is used to input the coordinates for a single polygon vertex, and a 

complete polygon is described with a list of vertices placed between a glBegin/glEnd 

pair. 

 By default, a polygon interior is displayed in a solid color, determined by the current 

color settings we can fill a polygon with a pattern and we can display polygon edges as 

line borders around the interior fill. 

 There are six different symbolic constants that we can use as the argument in the glBegin 

function to describe polygon fill areas 

 In some implementations of OpenGL, the following routine can be more efficient than 

generating a fill rectangle using glVertex specifications: 

glRect* (x1, y1, x2, y2); 

 One corner of this rectangle is at coordinate position (x1, y1), and the opposite corner of 

the rectangle is at position (x2, y2). 

 Suffix codes for glRect specify the coordinate data type and whether coordinates are to be 

expressed as array elements. 

 These codes are i (for integer), s (for short), f (for float), d (for double), and v (for 

vector). 

 Example 

glRecti (200, 100, 50, 250); 

If we put the coordinate values for this rectangle into arrays, we can generate the 

same square with the following code: 

int vertex1 [ ] = {200, 100}; 

int vertex2 [ ] = {50, 250}; 

glRectiv (vertex1, vertex2); 

Polygon 

 With the OpenGL primitive constant GL POLYGON, we can display a single polygon 

fill area. 

 Each of the points is represented as an array of (x, y) coordinate values: 

glBegin (GL_POLYGON); 

glVertex2iv (p1); 
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glVertex2iv (p2); 

glVertex2iv (p3); 

glVertex2iv (p4); 

glVertex2iv (p5); 

glVertex2iv (p6); 

glEnd ( ); 

 A polygon vertex list must contain at least three vertices. Otherwise, nothing is displayed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) A single convex polygon fill area generated with the primitive constant GL POLYGON. (b) 

Two unconnected triangles generated with GL TRIANGLES. 

(c) Four connected triangles generated with GL TRIANGLE STRIP. 

(d) Four connected triangles generated with GL TRIANGLE FAN. 

 
 

Triangles 

 Displays the trianlges. 
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 Three primitives in triangles, GL_TRIANGLES, GL_TRIANGLE_FAN, 

GL_TRIANGLE_STRIP 

glBegin (GL_TRIANGLES); 

glVertex2iv (p1); 

glVertex2iv (p2); 

glVertex2iv (p6); 

glVertex2iv (p3); 

glVertex2iv (p4); 

glVertex2iv (p5); 

glEnd ( ); 

 
 

 In this case, the first three coordinate points define the vertices for one triangle, the next 

three points define the next triangle, and so forth. 

 For each triangle fill area, we specify the vertex positions in a counterclockwise order 

triangle strip 

glBegin (GL_TRIANGLE_STRIP); 

glVertex2iv (p1); 

glVertex2iv (p2); 

glVertex2iv (p6); 

glVertex2iv (p3); 

glVertex2iv (p5); 

glVertex2iv (p4); 

glEnd ( ); 

 Assuming that no coordinate positions are repeated in a list of N vertices, we obtain N − 2 

triangles in the strip. Clearly, we must have N ≥ 3 or nothing is displayed. 

 Each successive triangle shares an edge with the previously defined triangle, so the 

ordering of the vertex list must be set up to ensure a consistent display. 

 Example, our first triangle (n = 1) would be listed as having vertices (p1, p2, p6). The 

second triangle (n = 2) would have the vertex ordering (p6, p2, p3). Vertex ordering for 

the third triangle (n = 3) would be (p6, p3, p5). And the fourth triangle (n = 4) would be 

listed in the polygon tables with vertex ordering (p5, p3, p4). 
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Triangle Fan 

 Another way to generate a set of connected triangles is to use the “fan” Approach 

glBegin (GL_TRIANGLE_FAN); 

glVertex2iv (p1); 

glVertex2iv (p2); 

glVertex2iv (p3); 

glVertex2iv (p4); 

glVertex2iv (p5); 

glVertex2iv (p6); 

glEnd ( ); 

 For N vertices, we again obtain N−2 triangles, providing no vertex positions are repeated, 

and we must list at least three vertices be specified in the proper order to define front and 

back faces for each triangle correctly. 

 Therefore, triangle 1 is defined with the vertex list (p1, p2, p3); triangle 2 has the vertex 

ordering (p1, p3, p4); triangle 3 has its vertices specified in the order (p1, p4, p5); and 

triangle 4 is listed with vertices (p1, p5, p6). 

 
Quadrilaterals 

 OpenGL provides for the specifications of two types of quadrilaterals. 

 With the GL QUADS primitive constant and the following list of eight vertices, specified 

as two-dimensional coordinate arrays, we can generate the display shown in Figure (a): 

glBegin (GL_QUADS); 

glVertex2iv (p1); 

glVertex2iv (p2); 

glVertex2iv (p3); 

glVertex2iv (p4); 

glVertex2iv (p5); 

glVertex2iv (p6); 

glVertex2iv (p7); 

glVertex2iv (p8); 

glEnd ( ); 
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 Rearranging the vertex list in the previous quadrilateral code example and changing the 

primitive constant to GL QUAD STRIP, we can obtain the set of connected quadrilaterals 

shown in Figure (b): 

glBegin (GL_QUAD_STRIP); 

glVertex2iv (p1); 

glVertex2iv (p2); 

glVertex2iv (p4); 

glVertex2iv (p3); 

glVertex2iv (p5); 

glVertex2iv (p6); 

glVertex2iv (p8); 

glVertex2iv (p7); 

glEnd ( ); 

 
 

 For a list of N vertices, we obtain N/2− 1 quadrilaterals, providing that N ≥ 4. Thus, our 

first quadrilateral (n = 1) is listed as having a vertex ordering of (p1, p2, p3, p4). The 

second quadrilateral (n=2) has the vertex ordering (p4, p3, p6, p5), and the vertex 

ordering for the third quadrilateral (n=3) is (p5, p6, p7, p8). 
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Fill-Area Attributes 

 We can fill any specified regions, including circles, ellipses, and other objects with 

curved boundaries 

Fill Styles 

 A basic fill-area attribute provided by a general graphics library is the display style of the 

interior. 

 We can display a region with a single color, a specified fill pattern, or in a “hollow” style 

by showing only the boundary of the region 

 

 

 

 

 

 

 

 

 
 We can also fill selected regions of a scene using various brush styles, color-blending 

combinations, or textures. 

 For polygons, we could show the edges in different colors, widths, and styles; and we can 

select different display attributes for the front and back faces of a region. 

 Fill patterns can be defined in rectangular color arrays that list different colors for 

different positions in the array. 

 An array specifying a fill pattern is a mask that is to be applied to the display area. 

 The mask is replicated in the horizontal and vertical directions until the display area is 

filled with nonoverlapping copies of the pattern. 

 This process of filling an area with a rectangular pattern is called tiling, and a rectangular 

fill pattern is sometimes referred to as a tiling pattern predefined fill patterns are available 

in a system, such as the hatch fill patterns 
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 Hatch fill could be applied to regions by drawing sets of line segments to display either 

single hatching or crosshtching 

 
Color-Blended Fill Regions 

 Color-blended regions can be implemented using either transparency factors to control 

the blending of background and object colors, or using simple logical or replace 

operations as shown in figure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 The linear soft-fill algorithm repaints an area that was originally painted by merging a 

foreground color F with a single background color B, where F != B. 

 The current color P of each pixel within the area to be refilled is some linear combination 

of F and B: 
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P = tF + (1 − t)B 

 Where the transparency factor t has a value between 0 and 1 for each pixel. 

 For values of t less than 0.5, the background color contributes more to the interior color 

of the region than does the fill color. 

 If our color values are represented using separate red, green, and blue (RGB) 

components, each component of the colors, with 

P = (PR, PG, PB), F = (FR, FG, FB), B = (BR, BG, BB) is used 

 We can thus calculate the value of parameter t using one of the RGB color components as 

follows: 

 

 
 

Where k = R, G, or B; and Fk != Bk . 

 When two background colors B1 and B2 are mixed with foreground color F, the resulting 

pixel color P is 

P = t0F + t1B1 + (1 − t0 − t1)B2 

 Where the sum of the color-term coefficients t0, t1, and (1 − t0 − t1) must equal 1. 

 With three background colors and one foreground color, or with two background and two 

foreground colors, we need all three RGB equations to obtain the relative amounts of the 

four colors. 

 
General Scan-Line Polygon-Fill Algorithm 

 A scan-line fill of a region is performed by first determining the intersection positions of 

the boundaries of the fill region with the screen scan lines. 

 Then the fill colors are applied to each section of a scan line that lies within the interior of 

the fill region. 

 The simplest area to fill is a polygon because each scanline intersection point with a 

polygon boundary is obtained by solving a pair of simultaneous linear equations, where 

the equation for the scan line is simply y = constant. 
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 Figure above illustrates the basic scan-line procedure for a solid-color fill of a polygon. 

 For each scan line that crosses the polygon, the edge intersections are sorted from left to 

right, and then the pixel positions between, and including, each intersection pair are set to 

the specified fill color the fill color is applied to the five pixels from x = 10 to x = 14 and 

to the seven pixels from x = 18 to x = 24. 

 Whenever a scan line passes through a vertex, it intersects two polygon edges at that 

point. 

 In some cases, this can result in an odd number of boundary intersections for a scan line. 

 

 

 

 

 

 

 

 

 

 

 Scan line y’ intersects an even number of edges, and the two pairs of intersection points 

along this scan line correctly identify the interior pixel spans. 

 But scan line y intersects five polygon edges. 

 Thus, as we process scan lines, we need to distinguish between these cases. 

 For scan line y, the two edges sharing an intersection vertex are on opposite sides of the 

scan line. 

 But for scan line y’, the two intersecting edges are both above the scan line. 
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 Thus, a vertex that has adjoining edges on opposite sides of an intersecting scan line 

should be counted as just one boundary intersection point. 

 If the three endpoint y values of two consecutive edges monotonically increase or 

decrease, we need to count the shared (middle) vertex as a single intersection point for 

the scan line passing through that vertex. 

 Otherwise, the shared vertex represents a local extremum (minimum or maximum) on the 

polygon boundary, and the two edge intersections with the scan line passing through that 

vertex can be added to the intersection list. 

 One method for implementing the adjustment to the vertex-intersection count is to 

shorten some polygon edges to split those vertices that should be counted as one 

intersection. 

 We can process nonhorizontal edges around the polygon boundary in the order specified, 

either clockwise or counterclockwise. 

 Adjusting endpoint y values for a polygon, as we process edges in order around the 

polygon perimeter. The edge currently being processed is indicated as a solid line 

 

 

 

 

 

 

 

 
 

In (a), the y coordinate of the upper endpoint of the current edge is decreased by 1. In 

(b), the y coordinate of the upper endpoint of the next edge is decreased by 1. 

 
 Coherence properties can be used in computer-graphics algorithms to reduce processing. 

 Coherence methods often involve incremental calculations applied along a single scan 

line or between successive scan lines 
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 The slope of this edge can be expressed in terms of the scan-line intersection coordinates: 

 

 

 
 Because the change in y coordinates between the two scan lines is simply 

y k+1 − yk = 1 

 The x-intersection value xk+1 on the upper scan line can be determined from the x- 

intersection value xk on the preceding scan line as 

 

 

 Each successive x intercept can thus be calculated by adding the inverse of the slope and 

rounding to the nearest integer. 

 Along an edge with slope m, the intersection xk value for scan line k above the initial scan 

line can be calculated as 

xk = x0 +k/m 

Where, m is the ratio of two integers 

 

 

 
 Where Δx and Δy are the differences between the edge endpoint x and y coordinate 

values. 

 Thus, incremental calculations of x intercepts along an edge for successive scan lines can 

be expressed as 
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 To perform a polygon fill efficiently, we can first store the polygon boundary in a sorted 

edge table that contains all the information necessary to process the scan lines efficiently. 

 Proceeding around the edges in either a clockwise or a counterclockwise order, we can 

use a bucket sort to store the edges, sorted on the smallest y value of each edge, in the 

correct scan-line positions. 

 Only nonhorizontal edges are entered into the sorted edge table. 

 Each entry in the table for a particular scan line contains the maximum y value for that 

edge, the x-intercept value (at the lower vertex) for the edge, and the inverse slope of the 

edge. For each scan line, the edges are in sorted order fromleft to right 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 We process the scan lines from the bottom of the polygon to its top, producing an active 

edge list for each scan line crossing the polygon boundaries. 

 The active edge list for a scan line contains all edges crossed by that scan line, with 

iterative coherence calculations used to obtain the edge intersections 

 Implementation of edge-intersection calculations can be facilitated by storing Δx and Δy 

values in the sorted edge list 

 
OpenGL Fill-Area Attribute Functions 

 We generate displays of filled convex polygons in four steps: 

1. Define a fill pattern. 

2. Invoke the polygon-fill routine. 
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3. Activate the polygon-fill feature of OpenGL. 

4. Describe the polygons to be filled. 

 A polygon fill pattern is displayed up to and including the polygon edges. Thus, there are 

no boundary lines around the fill region unless we specifically add them to the display 

 
OpenGL Fill-Pattern Function 

 To fill the polygon with a pattern in OpenGL, we use a 32 × 32 bit mask. 

 A value of 1 in the mask indicates that the corresponding pixel is to be set to the current 

color, and a 0 leaves the value of that frame-buffer position unchanged. 

 The fill pattern is specified in unsigned bytes using the OpenGL data type Glubyte 

GLubyte fillPattern [ ] = { 0xff, 0x00, 0xff, 0x00, ... }; 

 The bits must be specified starting with the bottom row of the pattern, and continuing up 

to the topmost row (32) of the pattern. 

 This pattern is replicated across the entire area of the display window, starting at the 

lower-left window corner, and specified polygons are filled where the pattern overlaps 

those polygons 

 

 

 

 

 

 

 

 

 

 Once we have set a mask, we can establish it as the current fill pattern with the function 

glPolygonStipple (fillPattern); 

 We need to enable the fill routines before we specify the vertices for the polygons that are 

to be filled with the current pattern 

glEnable (GL_POLYGON_STIPPLE); 

 Similarly, we turn off pattern filling with 

glDisable (GL_POLYGON_STIPPLE); 
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OpenGL Texture and Interpolation Patterns 

 Another method for filling polygons is to use texture patterns. 

 This can produce fill patterns that simulate the surface appearance of wood, brick, 

brushed steel, or some other material. 

 We assign different colors to polygon vertices. 

 Interpolation fill of a polygon interior is used to produce realistic displays of shaded 

surfaces under various lighting conditions. 

 The polygon fill is then a linear interpolation of the colors at the vertices: 

glShadeModel (GL_SMOOTH); 

glBegin (GL_TRIANGLES); 

glColor3f (0.0, 0.0, 1.0); 

glVertex2i (50, 50); 

glColor3f (1.0, 0.0, 0.0); 

glVertex2i (150, 50); 

glColor3f (0.0, 1.0, 0.0); 

glVertex2i (75, 150); 

glEnd ( ); 

 
OpenGL Wire-Frame Methods 

 We can also choose to show only polygon edges. This produces a wire-frame or hollow 

display of the polygon; or we could display a polygon by plotting a set of points only at 

the vertex positions. 

 These options are selected with the function 

glPolygonMode (face, displayMode); 

 We use parameter face to designate which face of the polygon that we want to show as 

edges only or vertices only. 

 This parameter is then assigned either 

GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK. 

 If we want only the polygon edges displayed for our selection, we assign the constant 

GL_LINE to parameter displayMode. 
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 To plot only the polygon vertex points, we assign the constant GL_POINT to parameter 

displayMode. 

 Another option is to display a polygon with both an interior fill and a different color or 

pattern for its edges. 

 The following code section fills a polygon interior with a green color, and then the edges 

are assigned a red color: 

glColor3f (0.0, 1.0, 0.0); 

/* Invoke polygon-generating routine. */ 

glColor3f (1.0, 0.0, 0.0); 

glPolygonMode (GL_FRONT, GL_LINE); 

/* Invoke polygon-generating routine again. */ 

 For a three-dimensional polygon (one that does not have all vertices in the xy plane), this 

method for displaying the edges of a filled polygon may produce gaps along the edges. 

 This effect, sometimes referred to as stitching. 

 One way to eliminate the gaps along displayed edges of a three-dimensional polygon is to 

shift the depth values calculated by the fill routine so that they do not overlap with the 

edge depth values for that polygon. 

 We do this with the following two OpenGL functions: 

glEnable (GL_POLYGON_OFFSET_FILL); 

glPolygonOffset (factor1, factor2); 

 The first function activates the offset routine for scan-line filling, and the second function 

is used to set a couple of floating-point values factor1 and factor2 that are used to 

calculate the amount of depth offset. 

 The calculation for this depth offset is 

depthOffset = factor1 · maxSlope + factor2 · const 

Where, 

maxSlope is the maximum slope of the polygon and 

const is an implementation constant 

 As an example of assigning values to offset factors, we can modify the previous code 

segment as follows: 

glColor3f (0.0, 1.0, 0.0); 
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glEnable (GL_POLYGON_OFFSET_FILL); 

glPolygonOffset (1.0, 1.0); 

/* Invoke polygon-generating routine. */ 

glDisable (GL_POLYGON_OFFSET_FILL); 

glColor3f (1.0, 0.0, 0.0); 

glPolygonMode (GL_FRONT, GL_LINE); 

/* Invoke polygon-generating routine again. */ 

 Another method for eliminating the stitching effect along polygon edges is to use the 

OpenGL stencil buffer to limit the polygon interior filling so that it does not overlap the 

edges. 

 To display a concave polygon using OpenGL routines, we must first split it into a set of 

convex polygons. 

 We typically divide a concave polygon into a set of triangles. Then we could display the 

triangles. 

 

 

 

 

 

 

 

 

Dividing a concave polygon (a) into a set of triangles (b) produces triangle edges (dashed) that 

are interior to the original polygon. 

 Fortunately, OpenGL provides a mechanism that allows us to eliminate selected edges 

from a wire-frame display. 

 So all we need do is set that bit flag to “off” and the edge following that vertex will not 

be displayed. 

 We set this flag for an edge with the following function: 

glEdgeFlag (flag) 

 To indicate that a vertex does not precede a boundary edge, we assign the OpenGL 

constant GL_FALSE to parameter flag. 
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 This applies to all subsequently specified vertices until the next call to glEdgeFlag is 

made. 

 The OpenGL constant GL_TRUE turns the edge flag on again, which is the default. 

 As an illustration of the use of an edge flag, the following code displays only two edges 

of the defined triangle 

glPolygonMode (GL_FRONT_AND_BACK, GL_LINE); 

glBegin (GL_POLYGON); 

glVertex3fv (v1); 

glEdgeFlag (GL_FALSE); 

glVertex3fv (v2); 

glEdgeFlag (GL_TRUE); 

glVertex3fv (v3); 

glEnd ( ); 

 Polygon edge flags can also be specified in an array that could be combined or associated 

with a vertex array. 

 The statements for creating an array of edge flags are 

glEnableClientState (GL_EDGE_FLAG_ARRAY); 

glEdgeFlagPointer (offset, edgeFlagArray); 

 
OpenGL Front-Face Function 

 We can label selected surfaces in a scene independently as front or back with the function 

glFrontFace (vertexOrder); 

 If we set parameter vertexOrder to the OpenGL constant GL_CW, then a subsequently 

defined polygon with a clockwise ordering. 

  The constant GL_CCW labels a counterclockwise ordering of polygon vertices as front- 

facing, which is the default ordering.r its vertices is considered to be front-facing 
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 2DGeometric Transformations: 

Basic 2D Geometric Transformations, 

Matrix representations and homogeneouscoordinates. 

Inverse transformations, 

2DComposite transformations, 

Other 2D transformations, 

Raster methods for geometric transformations, 

OpenGL raster transformations 

OpenGL geometric transformations function, 
 

 

Two-Dimensional Geometric Transformations 

Operations that are applied to the geometric description of an object to change its 

position, orientation, or size are called geometric transformations. 

 
Basic Two-Dimensional Geometric Transformations 

The geometric-transformation functions that are available in all graphics packages are 

those for translation, rotation, and scaling. 

 
Two-Dimensional Translation 

 We perform a translation on a single coordinate point by adding offsets to its 

coordinates so as to generate a new coordinate position. 

 We are moving the original point position along a straight-line path to its new location. 

 To translate a two-dimensional position, we add translation distances tx and ty to the 

original coordinates (x, y) to obtain the new coordinate position (x’, y’) as shown in 

Figure 
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 The translation values of x’ and y’ is calculated as 

 

 

 The translation distance pair (tx, ty) is called a translation vector or shift vector Column 

vector representation is given as 

 

 

 

 This allows us to write the two-dimensional translation equations in the matrix Form 

 

 
 Translation is a rigid-body transformation that moves objects without deformation. 

Code: 

class wcPt2D { 

public: 

GLfloat x, y; 

}; 

void translatePolygon (wcPt2D * verts, GLint nVerts, GLfloat tx, GLfloat ty) 

{ 

GLint k; 

for (k = 0; k < nVerts; k++) { 

verts [k].x = verts [k].x + tx; 

verts [k].y = verts [k].y + ty; 

} 

glBegin (GL_POLYGON); 

for (k = 0; k < nVerts; k++) 

glVertex2f (verts [k].x, verts [k].y); 

glEnd ( ); 

} 
 

 

Two-Dimensional Rotation 

 We generate a rotation transformation of an object by specifying a rotation axis and a 

rotation angle. 
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 A two-dimensional rotation of an object is obtained by repositioning the object along a 

circular path in the xy plane. 

 In this case, we are rotating the object about a rotation axis that is perpendicular to the xy 

plane (parallel to the coordinate z axis). 

 Parameters for the two-dimensional rotation are the rotation angle θ and a position 

(xr, yr ), called the rotation point (or pivot point), about which the object is to be rotated 

 

 

 

 

 

 

 

 

 
 A positive value for the angle θ defines a counterclockwise rotation about the pivot point, 

as in above Figure , and a negative value rotates objects in the clockwise direction. 

 The angular and coordinate relationships of the original and transformed point positions 

are shown in Figure 

 

 

 

 

 

 

 

 

 

 

 In this figure, r is the constant distance of the point from the origin, angle φ is the original 

angular position of the point from the horizontal, and θ is the rotation angle. 

 we can express the transformed coordinates in terms of angles θ and φ as 

 

 

 
 The original coordinates of the point in polar coordinates are 
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 Substituting expressions of x and y in the eaquations of x’ and y’ we get 

 

 

 
 We can write the rotation equations in the matrix form 

P’ = R· P 

Where the rotation matrix is, 

 

 

 
 

 Rotation of a point about an arbitrary pivot position is illustrated in Figure 

 

 

 

 

 

 

 

 

 

 

 
 The transformation equations for rotation of a point about any specified rotation position 

(xr , yr ): 

 

 
 

Code: 

class wcPt2D { 

public: 

GLfloat x, y; 

}; 

void rotatePolygon (wcPt2D * verts, GLint nVerts, wcPt2D pivPt, GLdouble theta) 

{ 

wcPt2D * vertsRot; 

GLint k; 

for (k = 0; k < nVerts; k++) { 
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vertsRot [k].x = pivPt.x + (verts [k].x - pivPt.x) * cos (theta) - (verts [k].y - 

pivPt.y) * sin (theta); 

vertsRot [k].y = pivPt.y + (verts [k].x - pivPt.x) * sin (theta) + (verts [k].y - 

pivPt.y) * cos (theta); 

} 

glBegin (GL_POLYGON); 

for (k = 0; k < nVerts; k++) 

glVertex2f (vertsRot [k].x, vertsRot [k].y); 

glEnd ( ); 

} 
 

 

Two-Dimensional Scaling 

 To alter the size of an object, we apply a scaling transformation. 

 A simple twodimensional scaling operation is performed by multiplying object positions 

(x, y) by scaling factors sx and sy to produce the transformed coordinates (x’, y’): 

 

 
 The basic two-dimensional scaling equations can also be written in the following matrix 

form 

 

 

 

 

 
 

Where S is the 2 × 2 scaling matrix 

 Any positive values can be assigned to the scaling factors sx and sy. 

 Values less than 1 reduce the size of objects 

 Values greater than 1 produce enlargements. 

 Specifying a value of 1 for both sx and sy leaves the size of objects unchanged. 

 When sx and sy are assigned the same value, a uniform scaling is produced, which 

maintains relative object proportions. 
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 Unequal values for sx and sy result in a differential scaling that is often used in design 

applications. 

 In some systems, negative values can also be specified for the scaling parameters. This 

not only resizes an object, it reflects it about one or more of the coordinate axes. 

 Figure below illustrates scaling of a line by assigning the value 0.5 to both sx and sy 

 

 

 

 

 

 

 

 We can control the location of a scaled object by choosing a position, called the fixed 

point, that is to remain unchanged after the scaling transformation. 

 Coordinates for the fixed point, (x f , yf ), are often chosen at some object position, such 

as its centroid but any other spatial position can be selected. 

 For a coordinate position (x, y), the scaled coordinates (x’, y’) are then calculated from 

the following relationships: 

 

 
 We can rewrite Equations to separate the multiplicative and additive terms as 

 

 

 
 Where the additive terms x f (1 − sx) and yf (1 − sy) are constants for all points in the 

object. 

Code: 

class wcPt2D { 

public: 

GLfloat x, y; 

}; 

void scalePolygon (wcPt2D * verts, GLint nVerts, wcPt2D fixedPt, GLfloat sx, GLfloat sy) 

{ 

wcPt2D vertsNew; 
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GLint k; 

for (k = 0; k < nVerts; k++) { 

vertsNew [k].x = verts [k].x * sx + fixedPt.x * (1 - sx); 

vertsNew [k].y = verts [k].y * sy + fixedPt.y * (1 - sy); 

} 

glBegin (GL_POLYGON); 

for (k = 0; k < nVerts; k++) 

glVertex2f (vertsNew [k].x, vertsNew [k].y); 

glEnd ( ); 

} 
 

 

Matrix Representations and Homogeneous Coordinates 

 Each of the three basic two-dimensional transformations (translation, rotation, and 

scaling) can be expressed in the general matrix form 

 

 
 With coordinate positions P and P’ represented as column vectors. 

 Matrix M1 is a 2 × 2 array containing multiplicative factors, and M2 is a two-element 

column matrix containing translational terms. 

 For translation, M1 is the identity matrix. 

 For rotation or scaling, M2 contains the translational terms associated with the pivot 

point or scaling fixed point. 

 
Homogeneous Coordinates 

 Multiplicative and translational terms for a two-dimensional geometric transformation 

can be combined into a single matrix if we expand the representations to 3 × 3 matrices 

 We can use the third column of a transformation matrix for the translation terms, and all 

transformation equations can be expressed as matrix multiplications. 

 We also need to expand the matrix representation for a two-dimensional coordinate 

position to a three-element column matrix 
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 A standard technique for accomplishing this is to expand each twodimensional 

coordinate-position representation (x, y) to a three-element representation (xh, yh, h), 

called homogeneous coordinates, where the homogeneous parameter h is a nonzero 

value such that 

 

 

 A general two-dimensional homogeneous coordinate representation could also be written 

as (h·x, h·y, h). 

 A convenient choice is simply to set h = 1. Each two-dimensional position is then 

represented with homogeneous coordinates (x, y, 1). 

 The term homogeneous coordinates is used in mathematics to refer to the effect of this 

representation on Cartesian equations. 

 
Two-Dimensional Translation Matrix 

 The homogeneous-coordinate for translation is given by 

 

 

 

 
 This translation operation can be written in the abbreviated form 

 

 
with T(tx, ty) as the 3 × 3 translation matrix 

 
 

Two-Dimensional Rotation Matrix 

 Two-dimensional rotation transformation equations about the coordinate origin can be 

expressed in the matrix form 

 

 

 

 

 

 
 The rotation transformation operator R(θ ) is the 3 × 3 matrix with rotation parameter θ. 
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Two-Dimensional Scaling Matrix 

 A scaling transformation relative to the coordinate origin can now be expressed as the 

matrix multiplication 

 

 

 

 

 
 

 The scaling operator S(sx, sy ) is the 3 × 3 matrix with parameters sx and sy 

 
 

Inverse Transformations 

 For translation,we obtain the inverse matrix by negating the translation distances. Thus, if 

we have two-dimensional translation distances tx and ty, the inverse translation matrix is 

 

 

 

 
 An inverse rotation is accomplished by replacing the rotation angle by its negative. 

 A two-dimensional rotation through an angle θ about the coordinate origin has the 

inverse transformation matrix 

 

 

 
 

 We form the inverse matrix for any scaling transformation by replacing the scaling 

parameters with their reciprocals. the inverse transformation matrix is 
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Two-Dimensional Composite Transformations 

 Forming products of transformation matrices is often referred to as a concatenation, or 

composition, of matrices if we want to apply two transformations to point position P, the 

transformed location would be calculated as 

 

 
 

 The coordinate position is transformed using the composite matrixM, rather than 

applying the individual transformations M1 and thenM2. 

 
Composite Two-Dimensional Translations 

 If two successive translation vectors (t1x, t1y) and (t2x, t2y) are applied to a 

twodimensional coordinate position P, the final transformed location P’ is calculated as 

 

 

 
where P and P’ are represented as three-element, homogeneous-coordinate 

column vectors 

 Also, the composite transformation matrix for this sequence of translations is 

 

 

 

 

 

 

 

 
Composite Two-Dimensional Rotations 

 Two successive rotations applied to a point P produce the transformed position 

 

 

 
 By multiplying the two rotation matrices, we can verify that two successive rotations are 

additive: 

R(θ2) · R(θ1) = R(θ1 + θ2) 
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 So that the final rotated coordinates of a point can be calculated with the composite 

rotation matrix as 

P’ = R(θ1 + θ2) · P 

 
 

Composite Two-Dimensional Scalings 

 Concatenating transformation matrices for two successive scaling operations in two 

dimensions produces the following composite scaling matrix 

 

 

 

 

 

 

 

 
General Two-Dimensional Pivot-Point Rotation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 We can generate a two-dimensional rotation about any other pivot point (xr , yr ) by 

performing the following sequence of translate-rotate-translate operations: 

1. Translate the object so that the pivot-point position is moved to the coordinate origin. 

2. Rotate the object about the coordinate origin. 

3. Translate the object so that the pivot point is returned to its original position. 

 The composite transformation matrix for this sequence is obtained with the concatenation 
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which can be expressed in the form 

 

 
where T(−xr , −yr ) = T−1(xr , yr ). 

 

General Two-Dimensional Fixed-Point Scaling 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 To produce a two-dimensional scaling with respect to a selected fixed position (x f , yf ), 

when we have a function that can scale relative to the coordinate origin only. This 

sequence is 

1. Translate the object so that the fixed point coincides with the coordinate origin. 

2. Scale the object with respect to the coordinate origin. 

3. Use the inverse of the translation in step (1) to return the object to its original position. 

 Concatenating the matrices for these three operations produces the required scaling 

matrix: 
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General Two-Dimensional Scaling Directions 

 Parameters sx and sy scale objects along the x and y directions. 

 We can scale an object in other directions by rotating the object to align the desired 

scaling directions with the coordinate axes before applying the scaling transformation. 

 Suppose we want to apply scaling factors with values specified by parameters s1 and s2 

in the directions shown in Figure 

 

 

 

 

 

 

 

 

 

 
 The composite matrix resulting from the product of these three transformations is 

 

 

 

 

 
 

Matrix Concatenation Properties 

Property 1: 

 Multiplication of matrices is associative. 

 For any three matrices,M1,M2, andM3, the matrix product M3 · M2 · M1 can be 

performed by first multiplying M3 and M2 or by first multiplyingM2 and M1: 

M3 ·M2 · M1 = (M3 · M2) ·M1 = M3 · (M2 · M1) 

 We can construct a composite matrix either by multiplying from left to right 

(premultiplying) or by multiplying from right to left (postmultiplying) 

 
Property 2: 

 Transformation products, on the other hand, may not be commutative. The matrix 

productM2 · M1 is not equal toM1 ·M2, in general. 
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 This means that if we want to translate and rotate an object, we must be careful about the 

order in which the composite matrix is evaluated 

 

 

 

 

 

 

 

 

 
 Reversing the order in which a sequence of transformations is performed may affect the 

transformed position of an object. In (a), an object is first translated in the x direction, 

then rotated counterclockwise through an angle of 45◦. In (b), the object is first rotated 

45◦ counterclockwise, then translated in the x direction. 

 
General Two-Dimensional Composite Transformations and Computational Efficiency 

 A two-dimensional transformation, representing any combination of translations, 

rotations, and scalings, can be expressed as 

 

 

 

 The four elements rsjk are the multiplicative rotation-scaling terms in the transformation, 

which involve only rotation angles and scaling factors if an object is to be scaled and 

rotated about its centroid coordinates (xc , yc ) and then translated, the values for the 

elements of the composite transformation matrix are 

 

 

 

 

 
 Although the above matrix requires nine multiplications and six additions, the explicit  

calculations for the transformed coordinates are 
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 We need actually perform only four multiplications and four additions to transform 

coordinate positions. 

 Because rotation calculations require trigonometric evaluations and several 

multiplications for each transformed point, computational efficiency can become an 

important consideration in rotation transformations 

 If we are rotating in small angular steps about the origin, for instance, we can set cos θ to 

1.0 and reduce transformation calculations at each step to two multiplications and two 

additions for each set of coordinates to be rotated. 

 These rotation calculations are 

x’= x − y sin θ, y’ = x sin θ + y 

 
 

Two-Dimensional Rigid-Body Transformation 

 If a transformation matrix includes only translation and rotation parameters, it is a rigid- 

body transformation matrix. 

 The general form for a two-dimensional rigid-body transformation matrix is 

 

 

 

 
where the four elements r jk are the multiplicative rotation terms, and the elements trx 

and try are the translational terms 

 A rigid-body change in coordinate position is also sometimes referred to as a rigid- 

motion transformation. 

 In addition, the above matrix has the property that its upper-left 2 × 2 submatrix is an 

orthogonal matrix. 

 If we consider each row (or each column) of the submatrix as a vector, then the two row 

vectors (rxx, rxy) and (ryx, ryy) (or the two column vectors) form an orthogonal set of 

unit vectors. 

 Such a set of vectors is also referred to as an orthonormal vector set. Each vector has unit 

length as follows 

 
 

and the vectors are perpendicular (their dot product is 0): 
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 Therefore, if these unit vectors are transformed by the rotation submatrix, then the vector 

(rxx, rxy) is converted to a unit vector along the x axis and the vector (ryx, ryy) is 

transformed into a unit vector along the y axis of the coordinate system 

 

 

 

 

 

 

 
 For example, the following rigid-body transformation first rotates an object through an 

angle θ about a pivot point (xr , yr ) and then translates the object 

 

 

 
 

 Here, orthogonal unit vectors in the upper-left 2×2 submatrix are (cos θ, −sin θ) and (sin 

θ, cos θ). 

 

 

 

 

 
Constructing Two-Dimensional Rotation Matrices 

 The orthogonal property of rotation matrices is useful for constructing the matrix when 

we know the final orientation of an object, rather than the amount of angular rotation 

necessary to put the object into that position. 

 We might want to rotate an object to align its axis of symmetry with the viewing 

(camera) direction, or we might want to rotate one object so that it is above another 

object. 

 Figure shows an object that is to be aligned with the unit direction vectors u_ and v 
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The rotation matrix for revolving an object from position (a) to position (b) can be constructed 

with the values of the unit orientation vectors u’ and v’ relative to the original orientation. 

 
Other Two-Dimensional Transformations 

Two such transformations 

1. Reflection and 

2. Shear. 

 
 

Reflection 

 A transformation that produces a mirror image of an object is called a reflection. 

 For a two-dimensional reflection, this image is generated relative to an axis of reflection 

by rotating the object 180◦ about the reflection axis. 

 Reflection about the line y = 0 (the x axis) is accomplished with the transformation 

Matrix 

 

 

 
 

 This transformation retains x values, but “flips” the y values of coordinate positions. 

 The resulting orientation of an object after it has been reflected about the x axis is shown 

in Figure 
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 A reflection about the line x = 0 (the y axis) flips x coordinates while keeping y 

coordinates the same. The matrix for this transformation is 

 

 

 

 
 Figure below illustrates the change in position of an object that has been reflected about 

the line x = 0. 

 

 

 

 

 

 

 

 

 

 
 We flip both the x and y coordinates of a point by reflecting relative to an axis that is 

perpendicular to the xy plane and that passes through the coordinate origin the matrix 

representation for this reflection is 

 

 

 
 

 An example of reflection about the origin is shown in Figure 
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 If we choose the reflection axis as the diagonal line y = x (Figure below), the reflection 

matrix is 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 To obtain a transformation matrix for reflection about the diagonal y = −x, we could 

concatenate matrices for the transformation sequence: 

(1) clockwise rotation by 45◦, 

(2) reflection about the y axis, and 

(3) counterclockwise rotation by 45◦. 

The resulting transformation matrix is 
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Shear 

 A transformation that distorts the shape of an object such that the transformed shape 

appears as if the object were composed of internal layers that had been caused to slide 

over each other is called a shear. 

 Two common shearing transformations are those that shift coordinate x values and those 

that shift y values. An x-direction shear relative to the x axis is produced with the 

transformation Matrix 

 

 

 

 
which transforms coordinate positions as 

 

 

 Any real number can be assigned to the shear parameter shx Setting parameter shx to the 

value 2, for example, changes the square into a parallelogram is shown below. Negative 

values for shx shift coordinate positions to the left. 

 

 

 

 

 

 

 

 

A unit square (a) is converted to a parallelogram (b) using the x -direction shear with shx = 2. 

 
 

 We can generate x-direction shears relative to other reference lines with 

 

 

 

 
Now, coordinate positions are transformed as 
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 A y-direction shear relative to the line x = xref is generated with the transformation 

Matrix 

 

 

 

which generates the transformed coordinate values 

 

 

 
 

Raster Methods for Geometric Transformations 

 Raster systems store picture information as color patterns in the frame buffer. 

 Therefore, some simple object transformations can be carried out rapidly by manipulating 

an array of pixel values 

 Few arithmetic operations are needed, so the pixel transformations are particularly 

efficient. 

 Functions that manipulate rectangular pixel arrays are called raster operations and 

moving a block of pixel values from one position to another is termed a block transfer, a 

bitblt, or a pixblt. 

 Figure below illustrates a two-dimensional translation implemented as a block transfer of 

a refresh-buffer area 

 

 

 

 

 

 

 

 

 

 

 
Translating an object from screen position (a) to the destination position shown in (b) by moving 

a rectangular block of pixel values. Coordinate positions Pmin and Pmax specify the limits of the 

rectangular block to be moved, and P0 is the destination reference position. 
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 Rotations in 90-degree increments are accomplished easily by rearranging the elements 

of a pixel array. 

 We can rotate a two-dimensional object or pattern 90◦ counterclockwise by reversing the 

pixel values in each row of the array, then interchanging rows and columns. 

 A 180◦ rotation is obtained by reversing the order of the elements in each row of the 

array, then reversing the order of the rows. 

 Figure below demonstrates the array manipulations that can be used to rotate a pixel 

block by 90◦ and by 180◦. 

 

 

 

 

 
 For array rotations that are not multiples of 90◦, we need to do some extra processing. 

 The general procedure is illustrated in Figure below. 

 

 

 

 

 

 

 

 

 

 
 

 Each destination pixel area is mapped onto the rotated array and the amount of overlap 

with the rotated pixel areas is calculated. 

 A color for a destination pixel can then be computed by averaging the colors of the 

overlapped source pixels, weighted by their percentage of area overlap. 

 Pixel areas in the original block are scaled, using specified values for sx and sy, and then 

mapped onto a set of destination pixels. 

 The color of each destination pixel is then assigned according to its area of overlap with 

the scaled pixel areas 
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OpenGL Raster Transformations 

 A translation of a rectangular array of pixel-color values from one buffer area to another 

can be accomplished in OpenGL as the following copy operation: 

glCopyPixels (xmin, ymin, width, height, GL_COLOR); 

 The first four parameters in this function give the location and dimensions of the pixel 

block; and the OpenGL symbolic constant GL_COLOR specifies that it is color values 

are to be copied. 

 
 A block of RGB color values in a buffer can be saved in an array with the function 

glReadPixels (xmin, ymin, width, height, GL_RGB, GL_UNSIGNED_BYTE, colorArray); 

 If color-table indices are stored at the pixel positions, we replace the constant GL RGB 

with GL_COLOR_INDEX. 

 
 To rotate the color values, we rearrange the rows and columns of the color array, as 

described in the previous section. Then we put the rotated array back in the buffer with 

glDrawPixels (width, height, GL_RGB, GL_UNSIGNED_BYTE, colorArray); 

 
 A two-dimensional scaling transformation can be performed as a raster operation in 

OpenGL by specifying scaling factors and then invoking either glCopyPixels or 

glDrawPixels. 

 For the raster operations, we set the scaling factors with 

glPixelZoom (sx, sy); 
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 We can also combine raster transformations with logical operations to produce various 

effects with the exclusive or operator 

 
OpenGL Functions for Two-Dimensional Geometric Transformations 

 To perform a translation, we invoke the translation routine and set the components for the 

three-dimensional translation vector. 

 In the rotation function, we specify the angle and the orientation for a rotation axis that  

intersects the coordinate origin. 

 In addition, a scaling function is used to set the three coordinate scaling factors relative to 

the coordinate origin. In each case, the transformation routine sets up a 4 × 4 matrix that 

is applied to the coordinates of objects that are referenced after the transformation call 

 
Basic OpenGL Geometric Transformations 

 A 4× 4 translation matrix is constructed with the following routine: 

glTranslate* (tx, ty, tz); 

 Translation parameters tx, ty, and tz can be assigned any real-number 

values, and the single suffix code to be affixed to this function is either f 

(float) or d (double). 

 For two-dimensional applications, we set tz = 0.0; and a two-dimensional 

position is represented as a four-element column matrix with the z 

component equal to 0.0. 

 example: glTranslatef (25.0, -10.0, 0.0); 

 Similarly, a 4 × 4 rotation matrix is generated with 

glRotate* (theta, vx, vy, vz); 

 where the vector v = (vx, vy, vz) can have any floating-point values for its 

components. 

 This vector defines the orientation for a rotation axis that passes through 

the coordinate origin. 

 If v is not specified as a unit vector, then it is normalized automatically 

before the elements of the rotation matrix are computed. 
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 The suffix code can be either f or d, and parameter theta is to be assigned 

a rotation angle in degree. 

 For example, the statement: glRotatef (90.0, 0.0, 0.0, 1.0); 

 We obtain a 4 × 4 scaling matrix with respect to the coordinate origin with the following 

routine: 

glScale* (sx, sy, sz); 

 The suffix code is again either f or d, and the scaling parameters can be assigned 

any real-number values. 

 Scaling in a two-dimensional system involves changes in the x and y dimensions, 

so a typical two-dimensional scaling operation has a z scaling factor of 1.0 

 Example: glScalef (2.0, -3.0, 1.0); 

 
 

OpenGL Matrix Operations 

 The glMatrixMode routine is used to set the projection mode which designates the matrix 

that is to be used for the projection transformation. 

 We specify the modelview mode with the statement 

glMatrixMode (GL_MODELVIEW); 

 which designates the 4×4 modelview matrix as the current matrix 

 Two other modes that we can set with the glMatrixMode function are the texture 

mode and the color mode. 

 The texture matrix is used for mapping texture patterns to surfaces, and the color 

matrix is used to convert from one color model to another. 

 The default argument for the glMatrixMode function is GL_MODELVIEW. 

 With the following function, we assign the identity matrix to the current matrix: 

glLoadIdentity ( ); 

 Alternatively, we can assign other values to the elements of the current matrix using 

glLoadMatrix* (elements16); 

 A single-subscripted, 16-element array of floating-point values is specified with 

parameter elements16, and a suffix code of either f or d is used to designate the data type 

 The elements in this array must be specified in column-major order 

 To illustrate this ordering, we initialize the modelview matrix with the following code: 
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glMatrixMode (GL_MODELVIEW); 

GLfloat elems [16]; 

GLint k; 

for (k = 0; k < 16; k++) 

elems [k] = float (k); 

glLoadMatrixf (elems); 

Which produces the matrix 

 

 

 

 

 
 We can also concatenate a specified matrix with the current matrix as follows: 

glMultMatrix* (otherElements16); 

 Again, the suffix code is either f or d, and parameter otherElements16 is a 16-element, 

single-subscripted array that lists the elements of some other matrix in column-major 

order. 

 Thus, assuming that the current matrix is the modelview matrix, which we designate as 

M, then the updated modelview matrix is computed as 

M = M· M’ 

 The glMultMatrix function can also be used to set up any transformation sequence with 

individually defined matrices. 

 For example, 

glMatrixMode (GL_MODELVIEW); 

glLoadIdentity ( ); // Set current matrix to the identity. 

glMultMatrixf (elemsM2); // Postmultiply identity with matrix M2. 

glMultMatrixf (elemsM1); // Postmultiply M2 with matrix M1. 

produces the following current modelview matrix: 

M = M2 · M1 
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2.3 Two Dimensional Viewing 

2.3.1 2D viewing pipeline 

2.3.1 OpenGL 2D viewing functions. 
 

 

 

The Two-Dimensional Viewing Pipeline 

 A section of a two-dimensional scene that is selected for display is called a clipping 

Window. 

 Sometimes the clipping window is alluded to as the world window or the viewing window 

 Graphics packages allow us also to control the placement within the display window 

using another “window” called the viewport. 

 The clipping window selects what we want to see; the viewport indicates where it is to be 

viewed on the output device. 

 By changing the position of a viewport, we can view objects at different positions on the 

display area of an output device 

 Usually, clipping windows and viewports are rectangles in standard position, with the 

rectangle edges parallel to the coordinate axes. 

 We first consider only rectangular viewports and clipping windows, as illustrated in 

Figure 
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Viewing Pipeline 

 The mapping of a two-dimensional, world-coordinate scene description to device 

coordinates is called a two-dimensional viewing transformation. 

 This transformation is simply referred to as the window-to-viewport transformation or the 

windowing transformation 

 We can describe the steps for two-dimensional viewing as indicated in Figure 

 

 

 

 

 

 Once aworld-coordinate scene has been constructed,wecould set up a separate two- 

dimensional, viewingcoordinate reference frame for specifying the clipping window. 

 To make the viewing process independent of the requirements of any output device, 

graphics systems convert object descriptions to normalized coordinates and apply the 

clipping routines. 

 Systems use normalized coordinates in the range from 0 to 1, and others use a normalized 

range from −1 to 1. 

 At the final step of the viewing transformation, the contents of the viewport are 

transferred to positions within the display window. 

 Clipping is usually performed in normalized coordinates. 

 This allows us to reduce computations by first concatenating the various transformation 

matrices 

 
OpenGL Two-Dimensional Viewing Functions 

 The GLU library provides a function for specifying a two-dimensional clipping window, 

and we have GLUT library functions for handling display windows. 

 
OpenGL Projection Mode 

 Before we select a clipping window and a viewport in OpenGL, we need to establish the 

appropriate mode for constructing the matrix to transform from world coordinates to 

screen coordinates. 
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 We must set the parameters for the clipping window as part of the projection 

transformation. 

 Function: 

glMatrixMode (GL_PROJECTION); 

 We can also set the initialization as 

glLoadIdentity ( ); 

This ensures that each time we enter the projection mode, the matrix will be reset 

to the identity matrix so that the new viewing parameters are not combined with the 

previous ones 

 
GLU Clipping-Window Function 

 To define a two-dimensional clipping window, we can use the GLU function: 

gluOrtho2D (xwmin, xwmax, ywmin, ywmax); 

 This function specifies an orthogonal projection for mapping the scene to the screen the 

orthogonal projection has no effect on our two-dimensional scene other than to convert 

object positions to normalized coordinates. 

 Normalized coordinates in the range from −1 to 1 are used in the OpenGL clipping 

routines. 

 Objects outside the normalized square (and outside the clipping window) are eliminated 

from the scene to be displayed. 

 If we do not specify a clipping window in an application program, the default coordinates 

are (xwmin, ywmin) = (−1.0, −1.0) and (xwmax, ywmax) = (1.0, 1.0). 

 Thus the default clipping window is the normalized square centered on the coordinate 

origin with a side length of 2.0. 

 
OpenGL Viewport Function 

 We specify the viewport parameters with the OpenGL function 

glViewport (xvmin, yvmin, vpWidth, vpHeight); 

Where, 

 xvmin and yvmin specify the position of the lowerleft corner of the viewport relative 

to the lower-left corner of the display window, 
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 vpWidth and vpHeight are pixel width and height of the viewport 

 Coordinates for the upper-right corner of the viewport are calculated for this 

transformation matrix in terms of the viewport width and height: 

 

 
 Multiple viewports can be created in OpenGL for a variety of applications. 

 We can obtain the parameters for the currently active viewport using the query function 

glGetIntegerv (GL_VIEWPORT, vpArray); 

where, 

 vpArray is a single-subscript, four-element array. 

 
 

Creating a GLUT Display Window 

 The GLUT library interfaces with any window-management system, we use the GLUT 

routines for creating and manipulating display windows so that our example programs 

will be independent of any specific machine. 

 We first need to initialize GLUT with the following function: 

glutInit (&argc, argv); 

 We have three functions inGLUTfor defining a display window and choosing its 

dimensions and position: 

1. glutInitWindowPosition (xTopLeft, yTopLeft); 

 gives the integer, screen-coordinate position for the top-left corner of the display 

window, relative to the top-left corner of the screen 

 
2. glutInitWindowSize (dwWidth, dwHeight); 

 we choose a width and height for the display window in positive integer pixel 

dimensions. 

 If we do not use these two functions to specify a size and position, the default size is 

300 by 300 and the default position is (−1, −1), which leaves the positioning of the 

display window to the window-management system 
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3. glutCreateWindow ("Title of Display Window"); 

 creates the display window, with the specified size and position, and assigns a title, 

although the use of the title also depends on the windowing system 

 
Setting the GLUT Display-Window Mode and Color 

 Various display-window parameters are selected with the GLUT function 

1. glutInitDisplayMode (mode); 

 We use this function to choose a color mode (RGB or index) and different buffer 

combinations, and the selected parameters are combined with the logical or 

operation. 

 
2. glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB); 

 The color mode specification GLUT_RGB is equivalent to GLUT_RGBA. 

 
 

3. glClearColor (red, green, blue, alpha); 

 A background color for the display window is chosen in RGB mode with the OpenGL 

routine 

 
4. glClearIndex (index); 

 This function sets the display window color using color-index mode, 

 Where parameter index is assigned an integer value corresponding to a position 

within the color table. 

 
GLUT Display-Window Identifier 

 Multiple display windows can be created for an application, and each is assigned a 

positive-integer display-window identifier, starting with the value 1 for the first window 

that is created. 

 Function: 

windowID = glutCreateWindow ("A Display Window"); 
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Deleting a GLUT Display Window 

 If we know the display window’s identifier, we can eliminate it with the statement 

glutDestroyWindow (windowID); 

 
 

Current GLUT Display Window 

 When we specify any display-window operation, it is applied to the current display 

window, which is either the last display window that we created or the one. 

 we select with the following command 

glutSetWindow (windowID); 

 We can query the system to determine which window is the current display window: 

currentWindowID = glutGetWindow ( ); 

 A value of 0 is returned by this function if there are no display windows or if the 

current display window was destroyed 

 
Relocating and Resizing a GLUT Display Window 

 We can reset the screen location for the current display window with the function 

glutPositionWindow (xNewTopLeft, yNewTopLeft); 

 Similarly, the following function resets the size of the current display window: 

glutReshapeWindow (dwNewWidth, dwNewHeight); 

 With the following command, we can expand the current display window to fill the 

screen: 

glutFullScreen ( ); 

 Whenever the size of a display window is changed, its aspect ratio may change and 

objects may be distorted from their original shapes. We can adjust for a change in 

display-window dimensions using the statement 

glutReshapeFunc (winReshapeFcn); 

 
 

Managing Multiple GLUT Display Windows 

 The GLUT library also has a number of routines for manipulating a display window in 

various ways. 
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 We use the following routine to convert the current display window to an icon in the form 

of a small picture or symbol representing the window: 

glutIconifyWindow ( ); 

 The label on this icon will be the same name that we assigned to the window, but we can 

change this with the following command: 

glutSetIconTitle ("Icon Name"); 

 We also can change the name of the display window with a similar command: 

glutSetWindowTitle ("New Window Name"); 

 We can choose any display window to be in front of all other windows by first 

designating it as the current window, and then issuing the “pop-window” command: 

glutSetWindow (windowID); 

glutPopWindow ( ); 

 In a similar way, we can “push” the current display window to the back so that it is 

behind all other display windows. This sequence of operations is 

glutSetWindow (windowID); 

glutPushWindow ( ); 

 We can also take the current window off the screen with 

glutHideWindow ( ); 

 In addition, we can return a “hidden” display window, or one that has been converted to 

an icon, by designating it as the current display window and then invoking the function 

glutShowWindow ( ); 

 
 

GLUT Subwindows 

 Within a selected display window, we can set up any number of second-level display 

windows, which are called subwindows. 

 We create a subwindow with the following function: 

glutCreateSubWindow (windowID, xBottomLeft, yBottomLeft, width, height); 

 Parameter windowID identifies the display window in which we want to set up the 

subwindow. 
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 Subwindows are assigned a positive integer identifier in the same way that first-level 

display windows are numbered, and we can place a subwindow inside another 

subwindow. 

 Each subwindow can be assigned an individual display mode and other parameters. We 

can even reshape, reposition, push, pop, hide, and show subwindows 

 
Selecting a Display-Window Screen-Cursor Shape 

 We can use the following GLUT routine to request a shape for the screen cursor that is to 

be used with the current window: 

glutSetCursor (shape); 

where, shape can be 

 GLUT_CURSOR_UP_DOWN : an up-down arrow. 

 GLUT_CURSOR_CYCLE: A rotating arrow is chosen 

 GLUT_CURSOR_WAIT: a wristwatch shape. 

 GLUT_CURSOR_DESTROY: a skull and crossbones 

 
 

Viewing Graphics Objects in a GLUT Display Window 

 After we have created a display window and selected its position, size, color, and other 

characteristics, we indicate what is to be shown in that window 

 Then we invoke the following function to assign something to that window: 

glutDisplayFunc (pictureDescrip); 

 This routine, called pictureDescrip for this example, is referred to as a callback function 

because it is the routine that is to be executed whenever GLUT determines that the 

display-window contents should be renewed. 

 We may need to call glutDisplayFunc after the glutPopWindow command if the display 

window has been damaged during the process of redisplaying the windows. 

 In this case, the following function is used to indicate that the contents of the current 

display window should be renewed: 

glutPostRedisplay ( ); 
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Executing the Application Program 

 When the program setup is complete and the display windows have been created and 

initialized, we need to issue the final GLUT command that signals execution of the 

program: 

glutMainLoop ( ); 

 
 

Other GLUT Functions 

 Sometimes it is convenient to designate a function that is to be executed when there are 

no other events for the system to process. We can do that with 

glutIdleFunc (function); 

 Finally, we can use the following function to query the system about some of the current 

state parameters: 

glutGet (stateParam); 

 This function returns an integer value corresponding to the symbolic constant we select 

for its argument. 

 For example, for the stateParam we can have the values 

 GLUT_WINDOW_X: obtains the x-coordinate position for the top-left corner of the 

current display window 

 GLUT_WINDOW_WIDTH or GLUT_SCREEN_WIDTH : retrieve the current 

display-window width or the screen width with. 
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